Malacosoma californicum

Last updated

Western tent caterpillar
Western Tent Caterpillars (Malacosoma californicum).jpg
larvae
Malacosoma californicum.jpg
Adult
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Lepidoptera
Family: Lasiocampidae
Genus: Malacosoma
Species:
M. californicum
Binomial name
Malacosoma californicum
Packard, 1864
Synonyms
  • Clisiocampa californicaPackard, [1865]
  • Clisiocampa californicaWalker, 1865
  • Bombyx pseudoneustriaBoisduval, 1868
  • Clisiocampa thoracicaStretch, 1881
  • Clisiocampa fragilis var. perluteaNeumoegen & Dyar, 1893
  • Clisiocampa ambisimileDyar, 1893
  • Clisiocampa pluvialisDyar, 1893
  • Clisiocampa fragilisStretch, 1881
  • Clisiocampa musNeumoegen, 1893

Malacosoma californicum, the western tent caterpillar, is a moth of the family Lasiocampidae. It is a tent caterpillar. The Western Tent Caterpillar is found in southern Canada, the western United States, and parts of northern Mexico. There are currently six recognized subspecies of M. californicum. [1] Western tent caterpillars are gregarious and will spend a large portion of their time with other caterpillars in silken tents constructed during their larval stage. [2]

Contents

Western tent caterpillars are univoltine, going through a single generation per year. [3] [4] Adults emerge in the late summer to copulate and lay eggs. Adult moths will preferentially lay their eggs on the sunny side of their host trees. [5] [6] Eggs will lay in diapause over the winter and hatch the following spring. Population sizes of western tent caterpillar can reach outbreak proportions, where populations reach very high numbers and large scale defoliation occurs. [6] Severe outbreaks can cause defoliation of host trees however, damage to trees is minimal and most trees will grow their leaves back quickly. [4] [6]

Description

The mature Western Tent caterpillar pre-pupa is 4-5 centimeters long. The caterpillars are black, grey, or white with an orange stripe running longitudinally across the body. There are blue-white lines on each segment with dispersed setae extruding from the body. Pupae are 2-2.5 centimeters and reddish-brown to black in colour. Pupae spin a white silken cocoon, powdered in white and yellow. Adults have wingspan between 3.5-5 centimeters. Moths are brown, yellow, tan or grey, with two lighter or darker lines crossing the body. [1]

Biology

Diet

Western tent caterpillar larvae are generalist herbivores, feeding on leaves. However, diet preference is heavily dependent on geographical location. The tree in which a female deposits the eggs is where the larvae will choose to feed. The most common host plants that caterpillars feed on are leaves from stonefruit trees. However, larvae will feed on many other types of tree foliage. Adult moths do not eat and live for 1–4 days. [7]

Thermoregulation

Western tent caterpillars are ectothermic, therefore they do not produce their own body heat and are heavily influenced by environmental temperatures. Larvae are thought to thermoregulate by basking in the sun and staying in close groups to elevate body temperature. [8] Increasing body temperature helps accelerate development time of caterpillars. [3]

Behaviour

Early instar caterpillars are gregarious and remain as a family in silken tents. Aggregations of caterpillars help discourage predation, increase temperature, and facilitate foraging. During late instars, caterpillars get larger and require more food resulting in more solitary behaviour. Whereas early instars will feed socially, using pheromones to direct others to food, during the final instar caterpillars begin to forage independently. [9] Caterpillars flick their heads in response to the sound of fly parasites, as a defensive mechanism. [10]

Reproduction

Moths will mate in mid-summer. Male-male competition will ensue for females. Females are polyandrous and lay a clutch of eggs sired by multiple males. [11] A single band of eggs is laid around the circumference of the branch. A single egg band can contain hundreds of eggs. [11]

Female M. californicum with egg mass Malacosoma californicum eggs.jpg
Female M. californicum with egg mass

Nucleopolyhedrovirus

Nuclear polyhedrosis virus (NPV) is a virus that affects insects, mainly butterflies and moths. NPV has shown to decrease fitness and cause death. [8] The body of larvae that die from NPV become thin and liquidy. [12] Increased temperatures has shown to increase the prevalence of this virus. [8] NPV can be transferred from parent to offspring or from individuals that come into physical contact. Additionally, caterpillars can contract NPV by coming in contact with silk strands from other larvae. [11] NPV infections does not always kill the caterpillar and survival is much more likely in late instar caterpillar. NPV infected caterpillars have reduced fecundity. [8]

Outbreaks

Outbreaks are caused when population sizes of larvae reach their highest levels. Population outbreaks of western tent caterpillar occur in cycles every 6–11 years. [6] Severe outbreaks can cause defoliation of host trees however, most trees will grow their leaves back quickly. [4] [6] Outbreaks of western tent caterpillar can cause large scale defoliation of trees. The caterpillars are considered by many to be a problem when they reach outbreak population sizes. However, outbreaks of larvae are considered to be more of a nuisance than a problem and does not negatively affect forest health because trees are able to regrow leaves quickly. [6] Human suppression of western tent caterpillars is most successful when intervening before high population numbers are reached. [13] The exact cause of population outbreaks is not truly understood, but a combination of many factors are believed to play a role in population fluctuations such as weather, predators, and virus. However, NPV is believed to play the largest role in the boom-and-bust of population outbreak cycles. Outbreaks of NPV Epizootic disease play significant roles in controlling population sizes of western tent caterpillars As populations of western tent caterpillar increase the prevalence of the disease increases and causes the subsequent crash of a population. [12]

Phenology

Western tent caterpillars have strong ecological interactions with their host plants. The time of caterpillar egg-hatch is closely timed with host plant bud-burst to ensure that early instar larvae are able to feed on leaves. However, caterpillars can hatch up to two weeks before or after tree's buds have burst. [3] Due to effects of climate change it is predicted that there will be a phenological asynchrony between host tree and the western tent caterpillar, characterized by advancing larval emergence. This does not appear to have significant effects on caterpillar larvae fitness because larvae are resistant to starvation. [3]

Subspecies

Related Research Articles

<span class="mw-page-title-main">Pine processionary</span> Species of moth

The pine processionary is a moth of the subfamily Thaumetopoeinae in the family Notodontidae, known for the irritating hairs of its caterpillars, their processions, and the economic damage they cause in coniferous forests. The species was first described scientifically by Michael Denis and Ignaz Schiffermüller in 1775, though it was known to the ancients, with remedies described by Theophrastus, Dioscorides and Pliny the Elder. Its processionary behaviour was described in 1916 by the French entomologist Jean-Henri Fabre. It is one of the most destructive species to pines and cedars in Central Asia, North Africa and southern Europe.

<span class="mw-page-title-main">Eastern tent caterpillar</span> Species of moth

The eastern tent caterpillar is a species of moth in the family Lasiocampidae, the tent caterpillars or lappet moths. It is univoltine, producing one generation per year. It is a tent caterpillar, a social species that forms communal nests in the branches of trees. It is sometimes confused with the spongy moth and the fall webworm, and may be erroneously referred to as a bagworm, which is the common name applied to unrelated caterpillars in the family Psychidae. The moths oviposit almost exclusively on trees in the plant family Rosaceae, particularly cherry (Prunus) and apple (Malus). The caterpillars are hairy with areas of blue, white, black and orange. The blue and white colors are structural colors created by the selective filtering of light by microtubules that arise on the cuticle.

<span class="mw-page-title-main">Brown-tail moth</span> Species of moth

The brown-tail moth is a moth of the family Erebidae. It is native to Europe, neighboring countries in Asia, and the north coast of Africa. Descriptions of outbreaks, i.e., large population increases of several years duration, have been reported as far back as the 1500s. The life cycle of the moth is atypical, in that it spends approximately nine months as larvae (caterpillars), leaving about one month each for pupae, imagos and eggs. Larvae (caterpillars) are covered in hairs. Two red spots on the back, toward the tail, distinguish these species from other similarly hairy moth larvae. The winged adults have white wings and a hairy white body with a tuft of brown hair at the tip of the abdomen. Females lay one egg cluster, usually on the underside of a leaf of a host plant. The species is polyphagous, meaning that it feeds on many different species of trees, including pear, apple, maple and oak.

<span class="mw-page-title-main">Lasiocampidae</span> Family of moths

The Lasiocampidae are a family of moths also known as eggars, tent caterpillars, snout moths, or lappet moths. Over 2,000 species occur worldwide, and probably not all have been named or studied. It is the sole family in superfamily Lasiocampoidea.

<span class="mw-page-title-main">Forest tent caterpillar moth</span> Species of insect

The forest tent caterpillar moth is a moth found throughout North America, especially in the eastern regions. Unlike related tent caterpillar species, the larvae of forest tent caterpillars do not make tents, but rather, weave a silky sheet where they lie together during molting. They also lay down strands of silk as they move over branches and travel as groups along these pheromone-containing silk trails. The caterpillars are social, traveling together to feed and massing as a group at rest. Group behavior diminishes as the caterpillars increase in size, so that by the fifth instar (molt) the caterpillars are feeding and resting independently.

<span class="mw-page-title-main">Tent caterpillar</span> Moth larvae from the genus Malacosoma

Tent caterpillars are moderately sized caterpillars, or moth larvae, belonging to the genus Malacosoma in the family Lasiocampidae. Twenty-six species have been described, six of which occur in North America and the rest in Eurasia. Some species are considered to have subspecies as well. They are often considered pests for their habit of defoliating trees. They are among the most social of all caterpillars and exhibit many noteworthy behaviors.

<i>Dryocampa rubicunda</i> Species of moth

Dryocampa rubicunda, the rosy maple moth, is a small North American moth in the family Saturniidae, also known as the great silk moths. It was first described by Johan Christian Fabricius in 1793. The species is known for its wooly body and pink and yellow coloration, which varies from cream or white to bright pink or yellow. Males have bushier antennae than females, which allow them to sense female pheromones for mating.

<span class="mw-page-title-main">African armyworm</span> Species of moth

The African armyworm, also called okalombo, kommandowurm, or nutgrass armyworm, is a species of moth of the family Noctuidae. The larvae often exhibit marching behavior when traveling to feeding sites, leading to the common name "armyworm". The caterpillars exhibit density-dependent polyphenism where larvae raised in isolation are green, while those raised in groups are black. These phases are termed solitaria and gregaria, respectively. Gregaria caterpillars are considered very deleterious pests, capable of destroying entire crops in a matter of weeks. The larvae feed on all types of grasses, early stages of cereal crops, sugarcane, and occasionally on coconut. The solitaria caterpillars are less active and undergo much slower development. The species is commonly found in Africa, but can also be seen in Yemen, some Pacific islands, and parts of Australia. African armyworm outbreaks tend to be devastating for farmland and pasture in these areas, with the highest-density outbreaks occurring during the rainy season after periods of prolonged drought. During the long dry seasons ("off-season"), the population densities are very low and no outbreaks are seen.

<span class="mw-page-title-main">Lackey moth</span> Species of moth

The lackey moth is a moth in the family Lasiocampidae. It was first described by Carl Linnaeus in his 1758 10th edition of Systema Naturae. It is common across southern Britain and central Europe. Malacosoma species are notable for their caterpillars which are brightly coloured and form silken tents to regulate their temperature. Malacosoma neustria caterpillars are brown with blue, orange and white stripes. The adults are a fairly uniform brown. The larvae feed mainly on trees and shrubs from within their tents.

<i>Choristoneura fumiferana</i> Species of moth

Choristoneura fumiferana, the eastern spruce budworm, is a species of moth of the family Tortricidae native to the eastern United States and Canada. The caterpillars feed on the needles of spruce and fir trees. Eastern spruce budworm populations can experience significant oscillations, with large outbreaks sometimes resulting in wide scale tree mortality. The first recorded outbreaks of the spruce budworm in the United States occurred in about 1807, and since 1909 there have been waves of budworm outbreaks throughout the eastern United States and Canada. In Canada, the major outbreaks occurred in periods circa 1910–20, c. 1940–50, and c. 1970–80, each of which impacted millions of hectares of forest. Longer-term tree-ring studies suggest that spruce budworm outbreaks have been recurring approximately every three decades since the 16th century, and paleoecological studies suggest the spruce budworm has been breaking out in eastern North America for thousands of years.

<i>Hyblaea puera</i> Moth species in family Hyblaeidae

Hyblaea puera, the teak defoliator, is a moth and cryptic species complex native to South Asia and South-east Asia. It was first described by Pieter Cramer in 1777. The species has also been recently reported to be present in Central America and Africa. The caterpillar feeds on teak and other trees. It is considered to be one of the major teak pests around the world.

<i>Eriogaster lanestris</i> Species of moth

Eriogaster lanestris, commonly known as the small eggar, is a moth of the family Lasiocampidae that is found across the Palearctic. Unlike many other members of the Lasiocampidae, the small eggar is a social insect. Historically, only eusocial insects like ants, bees, and termites were thought to exhibit complex social organization and communication systems. However, research since the late 20th century has found that E. lanestris, among a number of other phylogenetically related moth and butterfly species, demonstrates social behaviors as well. Larvae spend nearly their entire development in colonies of about 200 individuals, and this grouped social structure offers a number of benefits, from thermoregulation to increased foraging success.

<i>Agonopterix alstroemeriana</i> Species of moth

The hemlock moth, also known as the defoliating hemlock moth or poison hemlock moth, is a nocturnal moth species of the family Depressariidae. Of Palaearctic origin, it was first found in North America in 1973 when it was accidentally introduced. The moth is now widespread throughout the northern half of the United States, southern Canada, northern Europe, and, more recently, New Zealand and Australia. The larval form grows to around 10 mm, while the adults wingspan is between 17 mm and 19 mm.

<i>Ochrogaster lunifer</i> Species of moth

Ochrogaster lunifer, the bag-shelter moth or processionary caterpillar, is a member of the family Notodontidae. The species was first described by Gottlieb August Wilhelm Herrich-Schäffer in 1855. Both the larval and adult forms have hairs that cause irritation of the skin (urticaria). The adult moth has a woolly appearance and its wings can grow to be about 5.5 cm across. The larvae feed on Grevillea striata at night and reside in brown silken bag nest during the day.

<i>Acleris semipurpurana</i> Species of moth

Acleris semipurpurana is a species in the moth family Tortricidae, and one of several species of moth commonly known as oak leaftier or oak leaf tier. The larvae feed on the leaves of oak trees in the Eastern United States and southeastern Canada which can be a major cause of defoliation. The loss of leaves can kill or damage the affected trees, which are chiefly in the Lobatae or red oak section of Quercus, or oaks.

<span class="mw-page-title-main">Gypsy moths in the United States</span> Spread of an invasive species

The gypsy moth, also known as the spongy moth, was introduced in 1868 into the United States by Étienne Léopold Trouvelot, a French scientist living in Medford, Massachusetts. Because native silk-spinning caterpillars were susceptible to disease, Trouvelot imported the species in order to breed a more resistant hybrid species. Some of the moths escaped, found suitable habitat, and began breeding. The gypsy moth is now a major pest of hardwood trees in the Eastern United States.

<i>Archips cerasivorana</i> Species of moth

Archips cerasivorana, the ugly-nest caterpillar moth, is a species of moth of the family Tortricidae. The caterpillars of this species are known to create nests by tying the leaves of their host plant together. Within the nests, they live and feed off the leaves that have been tied together. The larvae are brownish or greenish yellow with a shiny dark brown head. Larvae can be found from May to July. The species overwinters as an egg, and pupation takes place within the nest. Caterpillars are seen to follow one another in trails, a behavior prompted by the release of signaling pheromones from their spinnerets.

<i>Spilosoma obliqua</i> Species of moth

Spilosoma obliqua, the jute hairy caterpillar or Bihar hairy caterpillar, is a moth of the family Erebidae. It is found in south-eastern Afghanistan, northern Pakistan, India, Bhutan, Bangladesh and Myanmar.

<i>Lymantria dispar dispar</i> Species of moth (gypsy moth)

Lymantria dispar dispar or LDD moth, commonly known as the gypsy moth, European gypsy moth, North American gypsy moth, or spongy moth, is a species of moth in the family Erebidae that is of Eurasian origin. It has a range that extends over Europe, Africa, and North America.

<i>Neodiprion abietis</i> Species of sawfly

Neodiprion abietis, commonly known as the balsam fir sawfly, is a species of insect in the family Diprionidae. It is found in North America from Canada to northern Mexico and is phytophagous, feeding on the needles of coniferous trees.

References

  1. 1 2 Ciesla, William; Ragenovich,Iral (2008). "Western Tent Caterpillar". Forest Insect & Disease Leaflet. 119: 1–8.
  2. Franklin, Michelle; Myers, Judith; Cory, Jenny (2014). "Genetic Similarity of Island Populations of Tent Caterpillars During Successive Outbreaks". PLOS ONE. 9 (5): 325–330. Bibcode:2014PLoSO...996679F. doi: 10.1371/journal.pone.0096679 . PMC   4032236 . PMID   24858905.
  3. 1 2 3 4 Kharouba, Heather; Vellend, Marc; Sarfraz, Rana; Myers, Judith (2015). "The Effects of Experimental Warming on the Timing of a Plant-Insect Herbivore Interaction". Journal of Animal Ecology. 84 (3): 785–796. doi: 10.1111/1365-2656.12328 . PMID   25535854.
  4. 1 2 3 Mitchell, Russel (1990). "Seasonal History of the Western Tent Caterpillar (Lepidoptera: Lasiocampidae) on Bitterbrush and Currant in Central Oregon". Journal of Economic Entomology. 83 (4): 1492–1494. doi:10.1093/jee/83.4.1492.
  5. Moore, Lynn; Myers, Judith; Eng, Rex (1988). "Western Tent Caterpillars Prefer the Sunny Side of the Tree, but Why?". Oikos. 51 (3): 321–326. doi:10.2307/3565313. JSTOR   3565313.
  6. 1 2 3 4 5 6 Myers, Judith (2000). "Population fluctuations of western tent caterpillars in southwestern British Columbia". Population Ecology. 42: 231–241. doi:10.1007/pl00012002. S2CID   14703541.
  7. Barnes, Elizabeth; Gosnell, Sarah; Hallagan, Claudia; Otten, Keelia; Slayter, Lainey; Murphy, Shannon (2016). "Performance of Western Tent Caterpillar (Malacosoma californicum) on Two Common Host Plants, Including a New Host Plant Record". Journal of the Lepidopterists' Society. 70 (4): 277–282. doi:10.18473/lepi.70i4.a5. S2CID   4957934.
  8. 1 2 3 4 Frid, Leonardo; Myers, Judith (2002). "Thermal Ecology of Western Tent Caterpilalrs Malacosoma californicum pluviale and Infection by Nucleopolyhedrovirus". Ecological Entomology. 27 (6): 665–673. doi: 10.1046/j.1365-2311.2002.00460.x .
  9. Safraz, Rana; Cory, Jenny; Myers, Judith (2013). "Life-History Consequences and Disease Resistance of Western Tent Caterpillars in Response to Localised, Herbivore-Induced Changes in Alder Leaf Quality". Ecological Entomology. 38: 61–67. doi:10.1111/j.1365-2311.2012.01404.x. S2CID   86568249.
  10. Myers, Judith; Smith, James (2011). "Head flicking by tent caterpillars: a defensive response to parasite sounds". Canadian Journal of Zoology. 56 (7): 1628–1631. doi:10.1139/z78-225.
  11. 1 2 3 Franklin, Michelle; Ritland, Carol; Myers, Judith; Cory, Jenny (2012). "Multiple Mating and Family Structure of the Western Tent Caterpillar, Malacosoma californicum pluviale: Impact on Disease Resistance". PLOS ONE. 7 (5): e37472. Bibcode:2012PLoSO...737472F. doi: 10.1371/journal.pone.0037472 . PMC   3360058 . PMID   22655050.
  12. 1 2 Cory, Jenny; Myers, Judith (2009). "Within and between population variation in disease resistance in cyclic populations of western tent caterpillars: a test of the disease defence hypothesis". Journal of Animal Ecology. 78 (3): 646–655. doi:10.1111/j.1365-2656.2008.01519.x. PMID   19220564.
  13. Thompson, W.A.; Vertinsky, I.B.; Wellington, W.G. (1981). "Intervening in pest outbreaks: simulation studies with the western tent caterpillar". Researches on Population Ecology. 23: 27–38. doi:10.1007/bf02514091. S2CID   7798127.