Mandelonitrile

Last updated
Mandelonitrile [1]
Racemic-mandelonitrile-2D-skeletal.png
(S)-Mandelonitrile-3D-balls.png
Names
IUPAC name
2-Hydroxy-2-phenylacetonitrile
Other names
α-Hydroxybenzeneacetonitrile
Identifiers
3D model (JSmol)
2207122
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.007.758 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 208-532-7
1684586
KEGG
PubChem CID
UNII
UN number 2810
  • InChI=1S/C8H7NO/c9-6-8(10)7-4-2-1-3-5-7/h1-5,8,10H Yes check.svgY
    Key: NNICRUQPODTGRU-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C8H7NO/c9-6-8(10)7-4-2-1-3-5-7/h1-5,8,10H
    Key: NNICRUQPODTGRU-UHFFFAOYAG
  • N#CC(O)c1ccccc1
Properties
C8H7NO
Molar mass 133.150 g·mol−1
Density 1.117 g/mL
Melting point 22 °C (72 °F; 295 K) (R/S) [2]
Boiling point 282.70 °C (540.86 °F; 555.85 K) Decomposes [2]
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
toxic
Flash point 113 °C (235 °F; 386 K)
Related compounds
Related compounds
mandelic acid, phenylacetonitrile
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

In organic chemistry, mandelonitrile is the nitrile of mandelic acid, or the cyanohydrin derivative of benzaldehyde. Small amounts of mandelonitrile occur in the pits of some fruits.

Contents

Occurrence

Mandelonitrile is the aglycone part of the cyanogenic glycosides prunasin and amygdalin. Prunasin can be hydrolyzed by the enyzme prunase into glucose and mandelonitrile (for example, when an appleseed is digested in a ruminant's stomach).

The naturally occurring (R)-(+) enantiomer finds use as an intermediate in the preparation of optically active α-hydroxy carboxylic acids, α-hydroxy aldehydes, α-hydroxy ketones, and 2-amino alcohols. [3]

Mandelonitrile can break down into cyanide and benzaldehyde, a reaction that can be catalyzed by the enzyme mandelonitrile lyase.

Preparation

Racemic mandelonitrile may be prepared similar to many other cyanohydrins. In a one pot reaction, benzaldehyde is reacted with sodium bisulfite to give the corresponding adduct, which further reacts with aqueous sodium cyanide to give the racemic product: [4]

Preparation of mandelonitrile.png

Related Research Articles

<span class="mw-page-title-main">Amygdalin</span> Cyanogenic glycoside present in kernels of fruit

Amygdalin is a naturally occurring chemical compound found in many plants, most notably in the seeds (kernels) of apricots, bitter almonds, apples, peaches, cherries and plums, and in the roots of manioc.

<span class="mw-page-title-main">Aldehyde</span> Organic compound containing the functional group R−CH=O

In organic chemistry, an aldehyde is an organic compound containing a functional group with the structure R−CH=O. The functional group itself can be referred to as an aldehyde but can also be classified as a formyl group. Aldehydes are a common motif in many chemicals important in technology and biology.

In organic chemistry, a nucleophilic addition (AN) reaction is an addition reaction where a chemical compound with an electrophilic double or triple bond reacts with a nucleophile, such that the double or triple bond is broken. Nucleophilic additions differ from electrophilic additions in that the former reactions involve the group to which atoms are added accepting electron pairs, whereas the latter reactions involve the group donating electron pairs.

<span class="mw-page-title-main">Cyanohydrin</span> Functional group in organic chemistry

In organic chemistry, a cyanohydrin or hydroxynitrile is a functional group found in organic compounds in which a cyano and a hydroxy group are attached to the same carbon atom. The general formula is R2C(OH)CN, where R is H, alkyl, or aryl. Cyanohydrins are industrially important precursors to carboxylic acids and some amino acids. Cyanohydrins can be formed by the cyanohydrin reaction, which involves treating a ketone or an aldehyde with hydrogen cyanide (HCN) in the presence of excess amounts of sodium cyanide (NaCN) as a catalyst:

In organic chemistry, a nitrile is any organic compound that has a −C≡N functional group. The name of the compound is composed of a base, which includes the carbon of the −C≡N, suffixed with "nitrile", so for example CH3CH2C≡N is called "propionitrile". The prefix cyano- is used interchangeably with the term nitrile in industrial literature. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. Nitrile rubber is also widely used as automotive and other seals since it is resistant to fuels and oils. Organic compounds containing multiple nitrile groups are known as cyanocarbons.

The Cannizzaro reaction, named after its discoverer Stanislao Cannizzaro, is a chemical reaction which involves the base-induced disproportionation of two molecules of a non-enolizable aldehyde to give a primary alcohol and a carboxylic acid.

In organic chemistry, hydrocyanation is a process for conversion of alkenes to nitriles. The reaction involves the addition of hydrogen cyanide and requires a catalyst. This conversion is conducted on an industrial scale for the production of precursors to nylon.

The Fischer oxazole synthesis is a chemical synthesis of an oxazole from a cyanohydrin and an aldehyde in the presence of anhydrous hydrochloric acid. This method was discovered by Emil Fischer in 1896. The cyanohydrin itself is derived from a separate aldehyde. The reactants of the oxazole synthesis itself, the cyanohydrin of an aldehyde and the other aldehyde itself, are usually present in equimolar amounts. Both reactants usually have an aromatic group, which appear at specific positions on the resulting heterocycle.

<span class="mw-page-title-main">Benzoin condensation</span> Reaction between two aromatic aldehydes

In organic chemistry, the benzoin addition is an addition reaction involving two aldehydes. The reaction generally occurs between aromatic aldehydes or glyoxals, and results in formation of an acyloin. In the classic example, benzaldehyde is converted to benzoin.

In organic chemistry, a cyanohydrin reaction is an organic reaction in which an aldehyde or ketone reacts with a cyanide anion or a nitrile to form a cyanohydrin. For example:

<span class="mw-page-title-main">Mandelic acid</span> Chemical compound

Mandelic acid is an aromatic alpha hydroxy acid with the molecular formula C6H5CH(OH)CO2H. It is a white crystalline solid that is soluble in water and polar organic solvents. It is a useful precursor to various drugs. The molecule is chiral. The racemic mixture is known as paramandelic acid.

Alpha hydroxy carboxylic acids, or α-hydroxy carboxylic acids (AHAs), are a group of carboxylic acids featuring a hydroxy group located one carbon atom away from the acid group. This structural aspect distinguishes them from beta hydroxy acids, where the functional groups are separated by two carbon atoms. Notable AHAs include glycolic acid, lactic acid, mandelic acid, and citric acid.

Acetone cyanohydrin (ACH) is an organic compound used in the production of methyl methacrylate, the monomer of the transparent plastic polymethyl methacrylate (PMMA), also known as acrylic. It liberates hydrogen cyanide easily, so it is used as a source of such. For this reason, this cyanohydrin is also highly toxic.

<span class="mw-page-title-main">Erlenmeyer–Plöchl azlactone and amino-acid synthesis</span>

The Erlenmeyer–Plöchl azlactone and amino acid synthesis, named after Friedrich Gustav Carl Emil Erlenmeyer who partly discovered the reaction, is a series of chemical reactions which transform an N-acyl glycine to various other amino acids via an oxazolone.

<span class="mw-page-title-main">Mandelonitrile lyase</span> Class of enzymes

The enzyme (R)-mandelonitrile lyase (EC 4.1.2.10, (R)-HNL, (R)-oxynitrilase, (R)-hydroxynitrile lyase) catalyzes the chemical reaction

Benzaldehyde (C6H5CHO) is an organic compound consisting of a benzene ring with a formyl substituent. It is among the simplest aromatic aldehydes and one of the most industrially useful.

Nitrile anions is jargon from the organic product resulting from the deprotonation of alkylnitriles. The proton(s) α to the nitrile group are sufficiently acidic that they undergo deprotonation by strong bases, usually lithium-derived. The products are not anions but covalent organolithium complexes. Regardless, these organolithium compounds are reactive toward various electrophiles.

<span class="mw-page-title-main">Prunasin</span> Chemical compound

(R)-prunasin is a cyanogenic glycoside related to amygdalin. Chemically, it is the glucoside of (R)-mandelonitrile.

(S)-hydroxynitrile lyase (EC 4.1.2.47, (S)-cyanohydrin producing hydroxynitrile lyase, (S)-oxynitrilase, (S)-HbHNL, (S)-MeHNL, hydroxynitrile lyase, oxynitrilase, HbHNL, MeHNL, (S)-selective hydroxynitrile lyase, (S)-cyanohydrin carbonyl-lyase (cyanide forming), hydroxynitrilase) is an enzyme with systematic name (S)-cyanohydrin lyase (cyanide forming). This enzyme catalyses the interconversion between cyanohydrins and the carbonyl compounds derived from the cyanohydrin with free cyanide, as in the following two chemical reactions:

<span class="mw-page-title-main">3-Phenoxymandelonitrile</span> Chemical compound

3-phenoxymandelonitrile is an organic compound belonging to the group of cyanohydrins. It is primarily used in the synthesis of pyrethroids, a class of insecticides.

References

  1. Sigma-Aldrich product page
  2. 1 2 The Merck Index (12th ed.). 1996.
  3. Kruse, C.G. In Collins, A.N. Sheldrake, G.N. Crosby, J., Eds. Chirality in Industry Chichester, UK , (1992), 279
  4. Corson, B. B.; Dodge, R. A.; Harris, S. A.; Yeaw, J. S. (1941). "Mandelic Acid". Organic Syntheses ; Collected Volumes, vol. 1, p. 336.