Names | |
---|---|
IUPAC name (R)-(β-D-Glucopyranosyloxy)(phenyl)acetonitrile | |
Systematic IUPAC name (R)-Phenyl{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}acetonitrile | |
Other names (R)-Prunasin D-Prunasin D-Mandelonitrile-β-D-glucoside Prulaurasin Laurocerasin Sambunigrin | |
Identifiers | |
3D model (JSmol) | |
ChEBI | |
ChemSpider | |
ECHA InfoCard | 100.002.489 |
EC Number |
|
KEGG | |
PubChem CID | |
UNII | |
| |
| |
Properties | |
C14H17NO6 | |
Molar mass | 295.291 g·mol−1 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
(R)-prunasin is a cyanogenic glycoside related to amygdalin. Chemically, it is the glucoside of (R)-mandelonitrile.
Prunasin is found in species in the genus Prunus such as Prunus japonica or P. maximowiczii and in bitter almonds. [1] It is also found in leaves and stems of Olinia ventosa , O. radiata , O. emarginata and O. rochetiana [2] and in Acacia greggii . It is a biosynthetic precursor of and intermediate in the biosynthesis of amygdalin, the chemical compound responsible for the taste of bitter almond.[ citation needed ]
It is also found in dandelion coffee, a coffee substitute.[ citation needed ]
Sambunigrin, a diastereomer of prunasin derived from (S)-mandelonitrile instead of it the (R)-isomer, has been isolated from leaves of the elder tree ( Sambucus nigra ). [3] Sambunigrin is present in the leaves and stems of elder at a 1:3 ratio of sambunigrin to prunasin, and 2:5 in the immature seed. [4] It is not found in the root. [4]
(R)-prunasin begins with the common amino acid phenylalanine, which in plants is produced via the Shikimate pathway in primary metabolism. The pathway is catalyzed mainly by two cytochrome P450 (CYP) enzymes and a UDP-glucosyltransferase (UGT). After (R)-prunasin is formed, it is either converted into amygdalin by an additional UDP-glucosyltransferase or degraded into benzaldehyde and hydrogen cyanide.
Researchers have shown that the accumulation (or lack of) of prunasin and amygdalin in the almond kernel is responsible for sweet and bitter genotypes. [1] Because amygdalin is responsible for the bitter almond taste, almond growers have selected genotypes which minimize the biosynthesis of amygdalin. The CYP enzymes responsible for generation of prunasin are conserved across Prunus species. [5] There is a correlation between high concentration of prunasin in the vegetative regions of the plant and the sweetness of the almond, which is relevant to the almond agricultural industry. In almonds, the amygdalin biosynthetic genes are expressed at different levels in the tegument (mother tissue, or outer section) and cotyledon (kernel, or father tissue), and vary significantly during almond ontogeny. [1] [6] [7] The biosynthesis of prunasin occurs in the tegument, then transported to other tissues for conversion to amygdalin or degraded. [1] [5]
L-phenylalanine is first hydroxylated by CYP79D16, followed by a decarboxylation and dehydration, forming the E-oxime phenylacetaldoxime. [8] Next, CYP71AN24 catalyzes the rearrangement of the E-oxime to the Z-oxime followed by a dehydration and a hydroxylation to form mandelonitrile. [8] Finally, UGT85A19 or UGT94AF3 utilize UDP-glucose to glycosylate mandelonitrile, forming (R)-prunasin. [1]
After generating (R)-prunasin, the product is further glycosylated into amygdalin by either isoform UGT94AF1 or UGT94AF2. [1] Expression of UGTAF1/2 and prunasin hydrolases results in a low overall concentration of (R)-prunasin in almond tissues. It is important to note that an alpha-glucosidase or prunasin hydrolase can convert (R)-prunasin to mandelonitrile, its precursor, which can then be spontaneously or enzymatically hydrolyzed to benzaldehyde and hydrogen cyanide. [9]
The biosynthesis of (R)-prunasin in E. cladocalyx, the sugar gum tree, has been shown to synthesize (R)-prunasin using an additional intermediate, phenylacetonitrile, using CYP706C55. [10] The pathway proceeds similarly to the pathway in Prunus species, where the multifunctional CYP79A125 catalyzes the conversion of L-phenylalanine to phenylacetaldoxime. Then, CYP706C55 catalyzes the dehydration of phenylacetaldoxime to phenylacetonitrile. Phenylacetonitrile is then hydroxylated by CYP71B103 to mandelonitrile. After generating mandelonitrile, UGT85A59 transfers glucose to yield (R)-prunasin. [10]
As (R)-prunasin is a product of secondary metabolism, its generation and degradation affect multiple metabolic pathways by consuming L-phenylalanine or increasing quantities of benzaldehyde and toxic hydrogen cyanide through prunasin degradation.
Metabolic profiling in almond, cassava, and sorghum identified a potential recycling mechanism where (R)-prunasin and other cyanogen glycosides may be utilized for nitrogen storage and nitrogen recycling without generating HCN. [11] In 2017, researchers used stable isotope labeling to demonstrate that 13C-labeled L-phenylalanine incorporated in (R)-prunasin could be converted to benzaldehyde and to salicylic acid using mandelonitrile as an intermediate. [12]
The toxicity of prunasin is based in its degradation products: (R)-prunasin is hydrolyzed to form benzaldehyde and hydrogen cyanide, which causes toxicity. Plants containing prunasin may therefore be toxic to animals, particularly ruminants. [13]
To degrade amygdalin to prunasin, amygdalin beta-glucosidase hydrolyzes the disaccharide to produce (R)-prunasin and D-glucose. Then, prunasin beta-glucosidase uses (R)-prunasin and water to produce D-glucose and mandelonitrile. After generating the aglycone mandelonitrile, then a mandelonitrile lyase can degrade the compound into benzaldehyde and hydrogen cyanide.[ citation needed ]
The almond is a species of small tree from the genus Prunus, cultivated worldwide for its seed, a culinary nut. Along with the peach, it is classified in the subgenus Amygdalus, distinguished from the other subgenera by corrugations on the shell (endocarp) surrounding the seed.
Amygdalin is a naturally occurring chemical compound found in many plants, most notably in the seeds (kernels) of apricots, bitter almonds, apples, peaches, cherries and plums, and in the roots of manioc.
A glucoside is a glycoside that is chemically derived from glucose. Glucosides are common in plants, but rare in animals. Glucose is produced when a glucoside is hydrolysed by purely chemical means, or decomposed by fermentation or enzymes.
Prunus laurocerasus, also known as cherry laurel, common laurel and sometimes English laurel in North America, is an evergreen species of cherry (Prunus), native to regions bordering the Black Sea in southwestern Asia and southeastern Europe, from Albania and Bulgaria east through Turkey to the Caucasus Mountains and northern Iran.
In chemistry, a glycoside is a molecule in which a sugar is bound to another functional group via a glycosidic bond. Glycosides play numerous important roles in living organisms. Many plants store chemicals in the form of inactive glycosides. These can be activated by enzyme hydrolysis, which causes the sugar part to be broken off, making the chemical available for use. Many such plant glycosides are used as medications. Several species of Heliconius butterfly are capable of incorporating these plant compounds as a form of chemical defense against predators. In animals and humans, poisons are often bound to sugar molecules as part of their elimination from the body.
In organic chemistry, a cyanohydrin or hydroxynitrile is a functional group found in organic compounds in which a cyano and a hydroxy group are attached to the same carbon atom. The general formula is R2C(OH)CN, where R is H, alkyl, or aryl. Cyanohydrins are industrially important precursors to carboxylic acids and some amino acids. Cyanohydrins can be formed by the cyanohydrin reaction, which involves treating a ketone or an aldehyde with hydrogen cyanide (HCN) in the presence of excess amounts of sodium cyanide (NaCN) as a catalyst:
Prunus serotina, commonly called black cherry, wild black cherry, rum cherry, or mountain black cherry, is a deciduous tree or shrub of the genus Prunus. Despite being called black cherry, it is not very closely related to the commonly cultivated cherries such as sweet cherry, sour cherry and Japanese flowering cherries which belong to Prunus subg. Cerasus. Instead, P. serotina belongs to Prunus subg. Padus, a subgenus also including Eurasian bird cherry and chokecherry. The species is widespread and common in North America and South America.
Mandelic acid is an aromatic alpha hydroxy acid with the molecular formula C6H5CH(OH)CO2H. It is a white crystalline solid that is soluble in water and polar organic solvents. It is a useful precursor to various drugs. The molecule is chiral. The racemic mixture is known as paramandelic acid.
Apigenin (4′,5,7-trihydroxyflavone), found in many plants, is a natural product belonging to the flavone class that is the aglycone of several naturally occurring glycosides. It is a yellow crystalline solid that has been used to dye wool.
In biochemistry, glycoside hydrolases are a class of enzymes which catalyze the hydrolysis of glycosidic bonds in complex sugars. They are extremely common enzymes, with roles in nature including degradation of biomass such as cellulose (cellulase), hemicellulose, and starch (amylase), in anti-bacterial defense strategies, in pathogenesis mechanisms and in normal cellular function. Together with glycosyltransferases, glycosidases form the major catalytic machinery for the synthesis and breakage of glycosidic bonds.
Dhurrin is a cyanogenic glycoside produced in many plants. Discovered in multiple sorghum varieties in 1906 as the culprit of cattle poisoning by hydrogen cyanide, dhurrin is most typically associated with Sorghum bicolor, the organism used for mapping the biosynthesis of dhurrin from tyrosine. Dhurrin's name is derived from the Arabic word for sorghum.
Lotaustralin is a cyanogenic glucoside found in small amounts in Fabaceae austral trefoil, cassava, lima bean, roseroot and white clover, among other plants. Lotaustralin is the glucoside of methyl ethyl ketone cyanohydrin and is structurally related to linamarin, the acetone cyanohydrin glucoside also found in these plants. Both lotaustralin and linamarin may be hydrolyzed by the enzyme linamarase to form glucose and a precursor to the toxic compound hydrogen cyanide.
The enzyme (R)-mandelonitrile lyase (EC 4.1.2.10, (R)-HNL, (R)-oxynitrilase, (R)-hydroxynitrile lyase) catalyzes the chemical reaction
In enzymology, a hydroxymandelonitrile glucosyltransferase is an enzyme that catalyzes the chemical reaction
In organic chemistry, mandelonitrile is the nitrile of mandelic acid, or the cyanohydrin derivative of benzaldehyde. Small amounts of mandelonitrile occur in the pits of some fruits.
Benzaldehyde (C6H5CHO) is an organic compound consisting of a benzene ring with a formyl substituent. It is the simplest aromatic aldehyde and one of the most industrially useful.
Tyrosine N-monooxygenase (EC 1.14.13.41, tyrosine N-hydroxylase, CYP79A1) is an enzyme with systematic name L-tyrosine,NADPH:oxygen oxidoreductase (N-hydroxylating). This enzyme catalyses the following chemical reaction
Isoleucine N-monooxygenase (EC 1.14.13.117, CYP79D3, CYP79D4) is an enzyme with systematic name L-isoleucine,NADPH:oxygen oxidoreductase (N-hydroxylating). This enzyme catalyses the following chemical reaction
(S)-hydroxynitrile lyase (EC 4.1.2.47, (S)-cyanohydrin producing hydroxynitrile lyase, (S)-oxynitrilase, (S)-HbHNL, (S)-MeHNL, hydroxynitrile lyase, oxynitrilase, HbHNL, MeHNL, (S)-selective hydroxynitrile lyase, (S)-cyanohydrin carbonyl-lyase (cyanide forming), hydroxynitrilase) is an enzyme with systematic name (S)-cyanohydrin lyase (cyanide forming). This enzyme catalyses the interconversion between cyanohydrins and the carbonyl compounds derived from the cyanohydrin with free cyanide, as in the following two chemical reactions:
Benzyl gentiobioside is a decyanogenated form of amygdalin. Benzyl gentiobioside occurs in Prunus persica seeds.