Marinobacter hydrocarbonoclasticus

Last updated

Marinobacter hydrocarbonoclasticus
Scientific classification
Domain:
Phylum:
Class:
Order:
Family:
Genus:
Binomial name
Marinobacter hydrocarbonoclasticus
Gauthier et al. 1992
Synonyms

Pseudomonas nauticaBauman et al. 1972
Marinobacter aquaeoleiNguyen et al. 1999

Contents

Marinobacter hydrocarbonoclasticus is a species of bacteria found in sea water which are able to degrade hydrocarbons. The cells are rod-shaped and motile by means of a single polar flagellum. [1]

Etymology

‘Hydrocarbonoclastic’ means ‘hydrocarbon dismantling.’ These bacteria were named as such because they can degrade the major components of oil. [2]

History

Both the genus Marinobacter and the species Marinobacter hydrocarbonoclasticus were first identified and described in 1992 by Gauthier et al. Using polymerase chain reaction to analyze by 16sRNA DNA, Gauthier showed that it was a member of the gamma group of the Proteobacteria, with sufficient distance to other described Proteobacteria to warrant the creation of a new genus. [2]

In 2005, Marquez and Ventosa from the Department of Microbiology and Parasitology of the University of Sevilla in Spain used “G+C content, fatty acid composition, and DNA-DNA hybridization… to understand the taxonomic positions” of Marinobacter hydrocarbonoclasticus and Marinobacter aquaeolei. [3] “Marquez suggests that the two species be united under the same name since they are heterotypic synonyms due to phenotypic and phylogenetic traits.” [3]

In 2011, Hamdan & Fuller discovered that Marinobacter hydrocarbonoclastus, die when exposed to the chemical dispersant COREXIT EC9500A used to treat the Deepwater Horizon oilspill. [4]

Genome Structure

The genome of Marinobacter hydrocarbonoclasticus has a 52.7% guanine + cytosine content. [2]

Evolution and Phylogeny

Marinobacter hydrocarbonoclasticus are a type of eubacteria. [2] 16sRNA DNA analysis indicates that these organisms are related to the Gammaproteobacteria. [2] Initial 16sRNA phylogenetic analysis did not reveal any close relatives to Marinobacter hydrocarbonoclasticus. Therefore, the organism was placed in a genus of its own, with scientists believing that Pseudomonas aeruginosa was its closest modern relative. [2]

In 1999, 16S rDNA sequence analysis revealed Marinobacter hydrocarbonoclasticus to have a very close relative in Marinobacter aquaeolei. [5] The two organisms contain 16S rDNA sequences with 99.4% similarity. [5]

The organisms from the genus Marinobacter have been found to have high diversity in terms of the environments they inhabit. Marinobacter species have been discovered in “hypersaline bacterial mats, marine hot-water springs in Japan, [and] cold seawater as in Arctic and Antarctic regions.” [6]

Morphology and description

Marinobacter hydrocarbonoclasticus are Gram-negative and rod shaped. [2] Their cells are, on average, are 0.3-0.6 µm in diameter and 2-3 µm long. [2] Their ability to produce flagella is largely dependent on the NaCl concentration of their environment. [2] In solutions with NaCl concentrations of 0.6-1.5M, Marinobacter hydrocarbonoclasticus produce and move by the movement of “a single unsheathed polar flagellum.” [2] In solutions with NaCl concentrations <0.2 or >1.5, M. hydrocarbonoclasticus are unable to produce flagella, and are thereby unable to influence their movement through medium. [2]

Metabolism

Marinobacter hydrocarbonoclasticus cells do not contain cytochrome P450, which is the key enzyme for degrading aromatic rings, a major component of petroleum hydrocarbons. [2] These organisms are adapted to growing on long non-cyclic alkanes, which are common in petroleum hydrocarbons. [2] Cells can grow on aromatic hydrocarbons, such as hydrocarbons containing aromatic rings. [2] Marinobacter hydrocarbonoclasticus are not obligate hydrocarbonoclastic organisms; they can also grow on standard medium, without hydrocarbons. [2] Moreover, Marinobacter cells can denitrify, producing nitrogen gas. [2] They can use either nitrate (NO3) or nitrite (NO2) as their terminal elector. [2] Marinobacter hydrocarbonoclasticus cells can grow in aerobic liquid medium culture and form colonies on agar, showing that they are not obligate anaerobes. [2]

Growth, Reproduction, and Behaviour

Marinobacter form discrete well-rounded colonies on plates, indicating that they reproduce via binary fission. Marinobacter hydrocarbonoclasticus can grow with or without the presence of oxygen. [2] Their cells are tolerant of high salinities. [2] They are capable of growing up to 3.5 Molar NaCl, but grow best at around 0.6 Molar, which is the molar of the Mediterranean seawater where they are isolated. [2] They can grow as free plankton or as fixed elements of a biofilm. [6] Marinobacter hydrocarbonoclasticus cells degrade hydrocarbons and excrete osmoprotectant ectoine (Site du Genoscope). They also excrete Petrobactin, “a bis-catechol α-hydroxy acid siderophore that readily undergoes a light-mediated decarboxylation reaction when bound to Fe(III).” [7]

Significance in Technology and Industry

Marinobacter hydrocarbonoclastus degrade petroleum hydrocarbons, including those found in oceanic oil spills. [4] In 2011, it was discovered that Marinobacter hydrocarbonoclastus are inhibited when exposed to the chemical COREXIT EC9500A. This chemical is a dispersant widely used to assist in the clean up after oceanic oil spills. [4] In their tests, Hamdan and Fuller (2011) obtained data suggesting that, “hydrogen-degrading bacteria are inhibited by chemical dispersants, and that the use of dispersants has the potential to diminish the capacity of the environment to bioremediate spills.”

Marinobacter hydrocarbonoclasticus are able to grow in liquid culture and on agar plates, where they produced beige colonies. [2] They are tolerant of high salinity and can grow aerobically and anaerobically. The ability to grow in heterogeneous environments could prove beneficial for scientists seeking new, bacterial based, techniques for oceanic oil spill clean up.

Related Research Articles

<span class="mw-page-title-main">Pseudomonadota</span> Phylum of Gram-negative bacteria

Pseudomonadota is a major phylum of Gram-negative bacteria. The renaming of several prokaryote phyla in 2021, including Pseudomonadota, remains controversial among microbiologists, many of whom continue to use the earlier name Proteobacteria, of long standing in the literature. The phylum Proteobacteria includes a wide variety of pathogenic genera, such as Escherichia, Salmonella, Vibrio, Yersinia, Legionella, and many others. Others are free-living (non-parasitic) and include many of the bacteria responsible for nitrogen fixation.

<span class="mw-page-title-main">Bonny Light oil</span>

Bonny Light oil was found at Oloibiri in the Niger delta region of Nigeria in 1956 for its commercial use. Due to its features of generating high profit, it is highly demanded by refiners. Bonny light oil has an API of 32.9, classified as light oil. It is regarded as more valuable than the other oils with lower API as more high-value products are produced in the refinement. However, in Nigeria, problems due to oil spillage caused by vandalism, affects both human and the ecosystem in detrimental ways. Some experiments on animals and soil are done to figure out those impacts on organisms.

<span class="mw-page-title-main">Gammaproteobacteria</span> Class of bacteria

Gammaproteobacteria is a class of bacteria in the phylum Pseudomonadota. It contains about 250 genera, which makes it the most genus-rich taxon of the Prokaryotes. Several medically, ecologically, and scientifically important groups of bacteria belong to this class. It is composed by all Gram-negative microbes and is the most phylogenetically and physiologically diverse class of Proteobacteria.

<i>Pseudomonas stutzeri</i> Species of bacterium

Pseudomonas stutzeri is a Gram-negative soil bacterium that is motile, has a single polar flagellum, and is classified as bacillus, or rod-shaped. While this bacterium was first isolated from human spinal fluid, it has since been found in many different environments due to its various characteristics and metabolic capabilities. P. stutzeri is an opportunistic pathogen in clinical settings, although infections are rare. Based on 16S rRNA analysis, this bacterium has been placed in the P. stutzeri group, to which it lends its name.

Marinobacter is a genus of bacteria found in sea water. They are also found in a variety of salt lakes. A number of strains and species can degrade hydrocarbons. The species involved in hydrocarbon degradation include M. alkaliphilus, M. arcticus, M. hydrocarbonoclasticus, M. maritimus, and M. squalenivorans.

Microbial biodegradation is the use of bioremediation and biotransformation methods to harness the naturally occurring ability of microbial xenobiotic metabolism to degrade, transform or accumulate environmental pollutants, including hydrocarbons, polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs), heterocyclic compounds, pharmaceutical substances, radionuclides and metals.

<span class="mw-page-title-main">Corexit</span> Oil dispersant

Corexit is a product line of oil dispersants used during oil spill response operations. It is produced by Nalco Holding Company, an indirect subsidiary of Ecolab. Corexit was originally developed by the Standard Oil Company of New Jersey. Corexit is typically applied by aerial spraying or spraying from ships directly onto an oil slick. On contact with the dispersant, oil that would otherwise float on the surface of the water is emulsified into tiny droplets and sinks or remains suspended in the water. In theory this allows the oil to be more rapidly degraded by bacteria (bioremediation) and prevents it from accumulating on beaches and in marshes.

Alcanivorax borkumensis is an alkane-degrading marine bacterium which naturally propagates and becomes predominant in crude-oil-containing seawater when nitrogen and phosphorus nutrients are supplemented.

<span class="mw-page-title-main">Oil dispersant</span> Mixture of emulsifiers and solvents used to treat oil spills

An oil dispersant is a mixture of emulsifiers and solvents that helps break oil into small droplets following an oil spill. Small droplets are easier to disperse throughout a water volume, and small droplets may be more readily biodegraded by microbes in the water. Dispersant use involves a trade-off between exposing coastal life to surface oil and exposing aquatic life to dispersed oil. While submerging the oil with dispersant may lessen exposure to marine life on the surface, it increases exposure for animals dwelling underwater, who may be harmed by toxicity of both dispersed oil and dispersant. Although dispersant reduces the amount of oil that lands ashore, it may allow faster, deeper penetration of oil into coastal terrain, where it is not easily biodegraded.

The Health consequences of the Deepwater Horizon oil spill are health effects related to the explosion of the Deepwater Horizon offshore drilling rig in the Gulf of Mexico on April 20, 2010. An oil discharge continued for 84 days, resulting in the largest oil spill in the history of the petroleum industry, estimated at approximately 206 million gallons. The spill exposed thousands of area residents and cleanup workers to risks associated with oil fumes, particulate matter from Controlled burns, volatile organic compounds (VOCs), polycylic aromatic hydrocarbons (PAHs), and heavy metals.

<i>Deepwater Horizon</i> oil spill response Containment and cleanup efforts

The Deepwater Horizon oil spill occurred between 10 April and 19 September 2010 in the Gulf of Mexico. A variety of techniques were used to address fundamental strategies for addressing the spilled oil, which were: to contain oil on the surface, dispersal, and removal. While most of the oil drilled off Louisiana is a lighter crude, the leaking oil was of a heavier blend which contained asphalt-like substances. According to Ed Overton, who heads a federal chemical hazard assessment team for oil spills, this type of oil emulsifies well. Once it becomes emulsified, it no longer evaporates as quickly as regular oil, does not rinse off as easily, cannot be broken down by microbes as easily, and does not burn as well. "That type of mixture essentially removes all the best oil clean-up weapons", Overton said.

Sphingomonas yanoikuyae is a short rod-shaped, strictly aerobic, Gram-negative, non-motile, non-spore-forming, chemoheterotrophic species of bacteria that is yellow or off-white in color. Its type strain is JCM 7371. It is notable for degrading a variety of aromatic compounds including biphenyl, naphthalene, phenanthrene, toluene, m-, and p-xylene. S. yanoikuyae was discovered by Brian Goodman on the southern coast of Papua New Guinea. However, Sphingomonas have a wide distribution across freshwater, seawater, and terrestrial habitats. This is due to the bacteria's ability to grow and survive under low-nutrient conditions as it can utilize a broad range of organic compounds.

Alcanivorax pacificus is a pyrene-degrading marine gammaproteobacterium. It is of the genus Alcanivorax, a group of marine bacteria known for degrading hydrocarbons. When originally proposed, the genus Alcanivorax comprised six distinguishable species. However, A. pacificus, a seventh strain, was isolated from deep sea sediments in the West Pacific Ocean by Shanghai Majorbio Bio-pharm Technology Co., Ltd. in 2011. A. pacificus’s ability to degrade hydrocarbons can be employed for cleaning up oil-contaminated oceans through bioremediation. The genomic differences present in this strain of Alcanivorax that distinguish it from the original consortium are important to understand to better utilize this bacteria for bioremediation.

Methylomonas scandinavica is a species of Gram-negative gammaproteobacteria found in deep igneous rock ground water in Sweden. As a member of the Methylomonas genus, M. scandinavica has the ability to use methane as a carbon source.

Petroleum microbiology is a branch of microbiology that deals with the study of microorganisms that can metabolize or alter crude or refined petroleum products. These microorganisms, also called hydrocarbonoclastic microorganisms, can degrade hydrocarbons and, include a wide distribution of bacteria, methanogenic archaea, and some fungi. Not all hydrocarbonoclasic microbes depend on hydrocarbons to survive, but instead may use petroleum products as alternative carbon and energy sources. Interest in this field is growing due to the increasing use of bioremediation of oil spills.

Oleispira antarctica is a hydrocarbonoclastic marine bacterium, the type species in its genus. It is psychrophilic, aerobic and Gram-negative, with polar flagellum. Its genome has been sequenced and from this information, it has been recognized as a potentially important organism capable of oil degradation in the deep sea.

Azotobacter salinestris is a Gram-negative, nitrogen-fixing bacterium; its specific name, salinestris, comes from the Latin words salinus meaning saline and estris which means "living in". It can be found living in soil or marine habitats as single cells or in chains of six to eight cells. This organism is motile at younger stages, but loses its flagella at older stages. This species is known for its potential use in bioremediation.

Bioremediation of petroleum contaminated environments is a process in which the biological pathways within microorganisms or plants are used to degrade or sequester toxic hydrocarbons, heavy metals, and other volatile organic compounds found within fossil fuels. Oil spills happen frequently at varying degrees along with all aspects of the petroleum supply chain, presenting a complex array of issues for both environmental and public health. While traditional cleanup methods such as chemical or manual containment and removal often result in rapid results, bioremediation is less labor-intensive, expensive, and averts chemical or mechanical damage. The efficiency and effectiveness of bioremediation efforts are based on maintaining ideal conditions, such as pH, RED-OX potential, temperature, moisture, oxygen abundance, nutrient availability, soil composition, and pollutant structure, for the desired organism or biological pathway to facilitate reactions. Three main types of bioremediation used for petroleum spills include microbial remediation, phytoremediation, and mycoremediation. Bioremediation has been implemented in various notable oil spills including the 1989 Exxon Valdez incident where the application of fertilizer on affected shoreline increased rates of biodegradation.

Hydrocarbonoclastic bacteria are a heterogeneous group of prokaryotes which can degrade and utilize hydrocarbon compounds as source of carbon and energy. Despite being present in most of environments around the world, several of these specialized bacteria live in the sea and have been isolated from polluted seawater.

<span class="mw-page-title-main">Petrobactin</span> Chemical compound

Petrobactin is a bis-catechol siderophore found in M. hydrocarbonoclasticus, A. macleodii, and the anthrax-producing B. anthracis. Like other siderophores petrobactin is a highly specific iron(III) transport ligand, contributing to the marine microbial uptake of environmental iron.

References

  1. Garrity, George M. (2005). Bergey's manual of systematic bacteriology, Volume Two: The Proteobacteria, Part B: The Gammaproteobacteria New York: Springer ISBN   0-387-24144-2
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Gauthier; Lafay; Christen; Fernandez; Acquaviva (October 1992). "Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium". International Journal of Systematic Bacteriology. 42 (4): 568–576. doi: 10.1099/00207713-42-4-568 . PMID   1382536.
  3. 1 2 "Marinobacter aquaeolei". Microbe Wiki. Kenyon College. July 7, 2011. Retrieved October 5, 2020.
  4. 1 2 3 Hamdan, Leila; Fulmer, Preston (March 2011). "Effects of COREXIT® EC9500A on bacteria from a beach oiled by the Deepwater Horizon spill" (PDF). Aquatic Microbial Ecology. 63 (2): 101–109. doi: 10.3354/ame01482 . Archived (PDF) from the original on January 24, 2022. Retrieved October 5, 2020.
  5. 1 2 Huu, Nguyen; Denner, Ewald; Ha, Dang; Wanner, Gerhard; Stan-Lotter, Helga (April 1999). "Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well". International Journal of Systematic Bacteriology. 49 (2): 367–375. doi: 10.1099/00207713-49-2-367 . PMID   10319457.
  6. 1 2 François Jacob Institute of biology. "Marinobacter Hydrocarbonoclasticus ATCC49840". Genoscope - Centre National De Séquençage. Commissariat à l´énergie atomique et aux énergies alternatives. Retrieved October 5, 2020.
  7. Barbeau, Katherine; Zhang, Guangping; Live, David; Butler, Alison (December 27, 2001). "Petrobactin, a Photoreactive Siderophore Produced by the Oil-Degrading Marine Bacterium Marinobacter hydrocarbonoclasticus". Journal of the American Chemical Society. 124 (3): 378–379. doi:10.1021/ja0119088. PMID   11792199 . Retrieved October 5, 2020.