Mesoangioblast

Last updated
A schematic figure showing mesoangioblast and hemangioblast origin and fates. Schematic-figure-showing-mesoangioblast-and-hemangioblast-derived-from-mesoderm W640.jpg
A schematic figure showing mesoangioblast and hemangioblast origin and fates.

A mesoangioblast is a type of progenitor cell that is associated with vasculature walls. Mesoangioblasts exhibit many similarities to pericytes, which are found in the small vessels. Mesoangioblasts are multipotent stem cells with the potential to progress down the endothelial or mesodermal lineages. Mesoangioblasts express the critical marker of angiopoietic progenitors, KDR (FLK1). Because of these properties, mesoangioblasts are a precursor of skeletal, smooth, and cardiac muscle cells along with endothelial cells. [1] Research has suggested their application for stem cell therapies for muscular dystrophy and cardiovascular disease.

Contents

Discovery and properties

Mesoangioblasts were initially isolated in 1997 by researchers at San Raffaele Scientific Institute in Milan, Italy. Their discovery was sparked by the findings of Mavilio et al., who found that a skeletal muscle precursor could be found in postnatal mice bone marrow. [2] This instigated the search for cells that could differentiate into cells of the mesodermal tissue. Additionally, it was theorized that stem cells could also be found in the embryonic dorsal aorta, which furthered interest in the subject matter.

To explore into this topic, Cossu et al. cloned murine embryonic organs and, after analysis, found cells in the dorsal aorta clones that were able to differentiate into skeletal myogenic progenitors that expressed myogenic markers like MyoD, Myf-5, and desmin. These cells also expressed endothelial markers like VE-cadherin, VEGF-R2, and β3 integrin. When these cells were combined with satellite cells from wt P10 mice and cultured, the two cell types were able to coalesce and regenerate skeletal muscle in vivo. [3] Experiments were also conducted using quail dorsal aorta cells transplanted into the wings of chick embryos. Quail donor cells colonized the vascular walls of chick wings, being especially prominent in skeletal muscle. Aorta-derived cells also differentiated into chondrocytes, smooth muscle cells, and bone cells. [4] From these findings, researchers concluded that the donor cells are involved with the developing mesoderm and vasculature of host tissues. Thus, these cells that act as a progenitor for mesodermal tissues were named "mesoangioblasts".

Characteristics

Potential Origins

Mesoangioblasts can first be isolated at the stage of development when ten to twelve somites are present. At this stage, the dorsal aorta consists mainly of an endothelial layer with a few mesenchymal cells on the abluminal side. It is unknown if mesoangioblasts are limited to certain areas in the aorta at this time. However, the roof and lateral walls of the dorsal aorta known to have cells that can differentiate into muscle cells or even more cell types, otherwise known as bona fide mesoangioblasts. [1]

Another proposed source of mesoangioblasts comes from a region underneath the aortic floor endothelium, termed the human Aorta-Gonad-Mesonephros (AGM) region, where hematopoiesis occurs. This theory describes that mesoangioblasts act as the precursors to certain cells in this region, as there is a possibility of a hematopoiesis-supporting element that contains mesodermal tissue progenitors. [5] Another prediction of mesoangioblast origin is that they may originate from post-natal bone marrow, which contains skeletal tissue progenitors that may be able to undergo myogenic differentiation. Another possible origin is from skeletal muscles, but their markers are different than those of aorta-derived mesoangioblasts. Along with this, they undergo senescence after multiple passages, unlike aorta-derived mesoangioblasts, which continue to divide and self-renew. [6]

Properties

One of the most significant properties of mesoangioblasts is their multipotency. Mesoangioblasts have the ability to differentiate into multiple cell types, such as skeletal muscle, smooth muscle, and endothelial cells. Due to their limited fates, they would not be considered pluripotent stem cells, but they still provide a significant number of differentiation paths that can be used for a wide variety of applications. Along with their multipotency, mesoangioblasts have the ability to self-renew, like other stem cells, meaning that they can divide and create new copies of themselves. This allows them to maintain a population of stem cells that can differentiate into the aforementioned cell types. [1]

Mesoangioblasts were identified based on their unique cell surface marker profile, which includes the expression of endothelial cell markers like KDR and angiopoietic cell markers like FLK1. [1] Mesoangioblasts can differentiate into multiple cell types, including skeletal muscle, smooth muscle, endothelial cells, and cardiac cells. Mesoangioblast-derived skeletal and cardiac muscle cells expressed TNNT2 and TNNI3, while endothelial cells expressed CD31 and Ve-cadherin, and smooth muscle cells expressed aSMA and smMHC. [7] They are also characterized by their ability to migrate and integrate into damaged tissues and their capabilities of self-renewal, which allows them to maintain their stem cell properties over multiple passages.

Research and applications

Muscular Dystrophy

Due to their ability to differentiate into skeletal muscle cells, mesoangioblasts were tested as forms of stem cell therapy to regenerate skeletal muscle in animal models of Duchenne muscular dystrophy (DMD) and limb-girdle muscular dystrophy (LGMD). [6] Experiments in alpha-sarcoglycan (α-SG) deficient dystrophic mice have shown that mesoangioblast transplantation can restore muscle function in a LGMD model. Cells from cloned embryonic dorsal aortas were delivered intra-arterially, where they migrated and engrafted to the dystrophic muscles, due to their expression of the receptor for advanced glycation end products. Embedding these cells was able to increase α-SG expression and reduce fibrosis and muscle damage. In conjunction with mesenchymal stem cells, mesoangioblasts can embed into dystrophic muscle fibers and provide reparative proteins such as dystrophin that replace the affected cells. [8] [9] In a 2006 study, mesoangioblast transplantation was used to ameliorate the effects of muscular dystrophy in golden retrievers with a congenital muscular dystrophy. The dogs given allogeneic cells survived; control animals died within 1 year. [10]

Mitochondrial Myopathy

Research has also found that mesoangioblasts can be fused to myotubes that carry mitochondrial DNA (mtDNA) mutations to reduce these mutation loads in mitochondrial myopathy cases. Mesoangioblasts were found to show little mtDNA mutation loads in cases of mitochondrial myopathy, and their ability to go through the blood vessel wall, unlike satellite cells and myoblasts, allows them to be appropriate candidates for systemic myogenic stem cell therapy. To fuse myotubes to mesoangioblasts, female, mutant myotubes were combined with male wild-type mesoangioblasts to allow for FISH to be used to quantify Y-chromosome positive . A laser capture microdissection (LCM) protocol was developed to assess mtDNA mutation load, which resulted a proportional decrease in mutation load with the number of wild-type nuclei fusion into mutant myotubes. This experiment implies a potential stem cell therapy in muscles using mesoangioblasts, but mesoangioblast nuclei number needs to be optimized for further studies. [11]

Cardiovascular Disease

Cardiac mesoangioblasts, which were derived from various regions in mouse juvenile hearts, can be used to differentiate into cardiomyocytes. Because cardiomyocytes lose the ability to divide after birth, if cells are damaged from disease, then the damage is irreparable, leading to heart failure and death. [12] By treating adult cardiac mesoangioblasts with TGF-β, up to 30% of the cells could differentiate into smooth muscle cells, however most differentiate into cardiomyocytes. By coculturing cardiac mesoangioblasts with mouse neonatal cardiomyocytes, many mesoangioblasts differentiated into cardiomyocytes. These cardiomyocytes expressed connexin 43, myosin, actin, and α-actinin, which are markers of cardiomyocytes. Through the use of RT-PCR, skeletal actin was found to not be present, while cardiac actin was present. [13] This solution allows for regeneration of cardiomyocytes that can be transplanted into the heart and replace damaged cells and restore function.

Related Research Articles

<span class="mw-page-title-main">Muscle cell</span> Type of cell found in muscle tissue

A muscle cell, also known as a myocyte, is a mature contractile cell in the muscle of an animal. In humans and other vertebrates there are three types: skeletal, smooth, and cardiac (cardiomyocytes). A skeletal muscle cell is long and threadlike with many nuclei and is called a muscle fiber. Muscle cells develop from embryonic precursor cells called myoblasts.

<span class="mw-page-title-main">Myostatin</span> Mammalian and avian protein

Myostatin is a protein that in humans is encoded by the MSTN gene. Myostatin is a myokine that is produced and released by myocytes and acts on muscle cells to inhibit muscle growth. Myostatin is a secreted growth differentiation factor that is a member of the TGF beta protein family.

<span class="mw-page-title-main">Becker muscular dystrophy</span> Genetic muscle disorder

Becker muscular dystrophy (BMD) is an X-linked recessive inherited disorder characterized by slowly progressing muscle weakness of the legs and pelvis. It is a type of dystrophinopathy. The cause is mutations and deletions in any of the 79 exons encoding the large dystrophin protein, essential for maintaining the muscle fiber's cell membrane integrity. Becker muscular dystrophy is related to Duchenne muscular dystrophy in that both result from a mutation in the dystrophin gene, however the hallmark of Becker is milder in-frame deletions. and hence has a milder course, with patients maintaining ambulation till 50–60 years if detected early.

Myosatellite cells, also known as satellite cells, muscle stem cells or MuSCs, are small multipotent cells with very little cytoplasm found in mature muscle. Satellite cells are precursors to skeletal muscle cells, able to give rise to satellite cells or differentiated skeletal muscle cells. They have the potential to provide additional myonuclei to their parent muscle fiber, or return to a quiescent state. More specifically, upon activation, satellite cells can re-enter the cell cycle to proliferate and differentiate into myoblasts.

<span class="mw-page-title-main">Paraxial mesoderm</span>

Paraxial mesoderm, also known as presomitic or somitic mesoderm, is the area of mesoderm in the neurulating embryo that flanks and forms simultaneously with the neural tube. The cells of this region give rise to somites, blocks of tissue running along both sides of the neural tube, which form muscle and the tissues of the back, including connective tissue and the dermis.

<span class="mw-page-title-main">Myogenesis</span> Formation of muscular tissue, particularly during embryonic development

Myogenesis is the formation of skeletal muscular tissue, particularly during embryonic development.

Cardiomyoplasty is a surgical procedure in which healthy muscle from another part of the body is wrapped around the heart to provide support for the failing heart. Most often the latissimus dorsi muscle is used for this purpose. A special pacemaker is implanted to make the skeletal muscle contract. If cardiomyoplasty is successful and increased cardiac output is achieved, it usually acts as a bridging therapy, giving time for damaged myocardium to be treated in other ways, such as remodeling by cellular therapies.

mir-1 microRNA precursor family Type of RNA

The miR-1 microRNA precursor is a small micro RNA that regulates its target protein's expression in the cell. microRNAs are transcribed as ~70 nucleotide precursors and subsequently processed by the Dicer enzyme to give products at ~22 nucleotides. In this case the mature sequence comes from the 3' arm of the precursor. The mature products are thought to have regulatory roles through complementarity to mRNA. In humans there are two distinct microRNAs that share an identical mature sequence, and these are called miR-1-1 and miR-1-2.

<span class="mw-page-title-main">Sarcospan</span>

Sarcospan is a protein that in humans is encoded by the SSPN gene.

<span class="mw-page-title-main">Integrin alpha 7</span>

Alpha-7 integrin is a protein that in humans is encoded by the ITGA7 gene. Alpha-7 integrin is critical for modulating cell-matrix interactions. Alpha-7 integrin is highly expressed in cardiac muscle, skeletal muscle and smooth muscle cells, and localizes to Z-disc and costamere structures. Mutations in ITGA7 have been associated with congenital myopathies and noncompaction cardiomyopathy, and altered expression levels of alpha-7 integrin have been identified in various forms of muscular dystrophy.

<span class="mw-page-title-main">ANKRD1</span> Protein-coding gene in the species Homo sapiens

Ankyrin repeat domain-containing protein 1, or Cardiac ankyrin repeat protein is a protein that in humans is encoded by the ANKRD1 gene also known as CARP. CARP is highly expressed in cardiac and skeletal muscle, and is a transcription factor involved in development and under conditions of stress. CARP has been implicated in several diseases, including dilated cardiomyopathy, hypertrophic cardiomyopathy, and several skeletal muscle myopathies.

Collagen VI (ColVI) is a type of collagen primarily associated with the extracellular matrix of skeletal muscle. ColVI maintains regularity in muscle function and stabilizes the cell membrane. It is synthesized by a complex, multistep pathway that leads to the formation of a unique network of linked microfilaments located in the extracellular matrix (ECM). ColVI plays a vital role in numerous cell types, including chondrocytes, neurons, myocytes, fibroblasts, and cardiomyocytes. ColVI molecules are made up of three alpha chains: α1(VI), α2(VI), and α3(VI). It is encoded by 6 genes: COL6A1, COL6A2, COL6A3, COL6A4, COL6A5, and COL6A6. The chain lengths of α1(VI) and α2(VI) are about 1,000 amino acids. The chain length of α3(VI) is roughly a third larger than those of α1(VI) and α2(VI), and it consists of several spliced variants within the range of 2,500 to 3,100 amino acids.

<span class="mw-page-title-main">C2C12</span> Mouse myoblast cell line

C2C12 is an immortalized mouse myoblast cell line. The C2C12 cell line is a subclone of myoblasts that were originally obtained by Yaffe and Saxel at the Weizmann Institute of Science in Israel in 1977. Developed for in vitro studies of myoblasts isolated from the complex interactions of in vivo conditions, C2C12 cells are useful in biomedical research. These cells are capable of rapid proliferation under high serum conditions and differentiation into myotubes under low serum conditions. Mononucleated myoblasts can later fuse to form multinucleated myotubes under low serum conditions or starvation, leading to the precursors of contractile skeletal muscle cells in the process of myogenesis. C2C12 cells are used to study the differentiation of myoblasts, osteoblasts, and myogenesis, to express various target proteins, and to explore mechanistic biochemical pathways.

Endogenous cardiac stem cells (eCSCs) are tissue-specific stem progenitor cells harboured within the adult mammalian heart. It has to be noted that a scientific-misconduct scandal, involving Harvard professor Piero Anversa, might indicate that the heart stem cell concept be broken. Therefore, the following article should be read with caution, as it builds on Anversa's results.

Neural crest cells are multipotent cells required for the development of cells, tissues and organ systems. A subpopulation of neural crest cells are the cardiac neural crest complex. This complex refers to the cells found amongst the midotic placode and somite 3 destined to undergo epithelial-mesenchymal transformation and migration to the heart via pharyngeal arches 3, 4 and 6.

<span class="mw-page-title-main">MYF5</span> Protein-coding gene in the species Homo sapiens

Myogenic factor 5 is a protein that in humans is encoded by the MYF5 gene. It is a protein with a key role in regulating muscle differentiation or myogenesis, specifically the development of skeletal muscle. Myf5 belongs to a family of proteins known as myogenic regulatory factors (MRFs). These basic helix loop helix transcription factors act sequentially in myogenic differentiation. MRF family members include Myf5, MyoD (Myf3), myogenin, and MRF4 (Myf6). This transcription factor is the earliest of all MRFs to be expressed in the embryo, where it is only markedly expressed for a few days. It functions during that time to commit myogenic precursor cells to become skeletal muscle. In fact, its expression in proliferating myoblasts has led to its classification as a determination factor. Furthermore, Myf5 is a master regulator of muscle development, possessing the ability to induce a muscle phenotype upon its forced expression in fibroblastic cells.

<span class="mw-page-title-main">MYF6</span> Protein-coding gene in the species Homo sapiens

Myogenic factor 6 is a protein that in humans is encoded by the MYF6 gene. This gene is also known in the biomedical literature as MRF4 and herculin. MYF6 is a myogenic regulatory factor (MRF) involved in the process known as myogenesis.

Margaret Buckingham, is a British developmental biologist working in the fields of myogenesis and cardiogenesis. She is an honorary professor at the Pasteur Institute in Paris and emeritus director in the Centre national de la recherche scientifique (CNRS). She is a member of the European Molecular Biology Organization, the Academia Europaea and the French Academy of Sciences.

Directed differentiation is a bioengineering methodology at the interface of stem cell biology, developmental biology and tissue engineering. It is essentially harnessing the potential of stem cells by constraining their differentiation in vitro toward a specific cell type or tissue of interest. Stem cells are by definition pluripotent, able to differentiate into several cell types such as neurons, cardiomyocytes, hepatocytes, etc. Efficient directed differentiation requires a detailed understanding of the lineage and cell fate decision, often provided by developmental biology.

Muscle tissue engineering is a subset of the general field of tissue engineering, which studies the combined use of cells and scaffolds to design therapeutic tissue implants. Within the clinical setting, muscle tissue engineering involves the culturing of cells from the patient's own body or from a donor, development of muscle tissue with or without the use of scaffolds, then the insertion of functional muscle tissue into the patient's body. Ideally, this implantation results in full regeneration of function and aesthetic within the patient's body. Outside the clinical setting, muscle tissue engineering is involved in drug screening, hybrid mechanical muscle actuators, robotic devices, and the development of engineered meat as a new food source.

References

  1. 1 2 3 4 Cossu, Giulio; Bianco, Paolo (2003-10-01). "Mesoangioblasts — vascular progenitors for extravascular mesodermal tissues". Current Opinion in Genetics & Development. 13 (5): 537–542. doi:10.1016/j.gde.2003.08.001. ISSN   0959-437X. PMID   14550421.
  2. Ferrari, Giuliana; Cusella–, Gabriella; Angelis, De; Coletta, Marcello; Paolucci, Egle; Stornaiuolo, Anna; Cossu, Giulio; Mavilio, Fulvio (1998-03-06). "Muscle Regeneration by Bone Marrow-Derived Myogenic Progenitors". Science. 279 (5356): 1528–1530. Bibcode:1998Sci...279.1528F. doi:10.1126/science.279.5356.1528. ISSN   0036-8075. PMID   9488650.
  3. De Angelis, Luciana; Berghella, Libera; Coletta, Marcello; Lattanzi, Laura; Zanchi, Malvina; Gabriella, M.; Ponzetto, Carola; Cossu, Giulio (1999-11-15). "Skeletal Myogenic Progenitors Originating from Embryonic Dorsal Aorta Coexpress Endothelial and Myogenic Markers and Contribute to Postnatal Muscle Growth and Regeneration". Journal of Cell Biology. 147 (4): 869–878. doi:10.1083/jcb.147.4.869. ISSN   0021-9525. PMC   2156164 . PMID   10562287.
  4. Minasi, Maria G.; Riminucci, Mara; De Angelis, Luciana; Borello, Ugo; Berarducci, Barbara; Innocenzi, Anna; Caprioli, Arianna; Sirabella, Dario; Baiocchi, Marta; De Maria, Ruggero; Boratto, Renata; Jaffredo, Thierry; Broccoli, Vania; Bianco, Paolo; Cossu, Giulio (2002-06-01). "The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues". Development. 129 (11): 2773–2783. doi:10.1242/dev.129.11.2773. ISSN   1477-9129. PMID   12015303.
  5. Marshall, C. J.; Moore, R. L.; Thorogood, P.; Brickell, P. M.; Kinnon, C.; Thrasher, A. J. (1999-09-16). "Detailed characterization of the human aorta-gonad-mesonephros region reveals morphological polarity resembling a hematopoietic stromal layer". Developmental Dynamics. 215 (2): 139–147. doi:10.1002/(SICI)1097-0177(199906)215:2<139::AID-DVDY6>3.0.CO;2-#. ISSN   1058-8388. PMID   10373018. S2CID   196604081.
  6. 1 2 Berry, Suzanne E. (2015-01-01). "Concise Review: Mesoangioblast and Mesenchymal Stem Cell Therapy for Muscular Dystrophy: Progress, Challenges, and Future Directions". Stem Cells Translational Medicine. 4 (1): 91–98. doi:10.5966/sctm.2014-0060. ISSN   2157-6564. PMC   4275006 . PMID   25391645.
  7. Zhang, Li; Issa Bhaloo, Shirin; Chen, Ting; Zhou, Bin; Xu, Qingbo (2018-05-25). "Role of Resident Stem Cells in Vessel Formation and Arteriosclerosis". Circulation Research. 122 (11): 1608–1624. doi:10.1161/CIRCRESAHA.118.313058. ISSN   0009-7330. PMC   5976231 . PMID   29798903.
  8. Guttinger, Maria; Tafi, Elisiana; Battaglia, Manuela; Coletta, Marcello; Cossu, Giulio (2006-11-15). "Allogeneic mesoangioblasts give rise to alpha-sarcoglycan expressing fibers when transplanted into dystrophic mice". Experimental Cell Research. 312 (19): 3872–3879. doi:10.1016/j.yexcr.2006.08.012. ISSN   0014-4827. PMID   16982052.
  9. Sampaolesi, Maurilio; Torrente, Yvan; Innocenzi, Anna; Tonlorenzi, Rossana; D'Antona, Giuseppe; Pellegrino, M. Antonietta; Barresi, Rita; Bresolin, Nereo; De Angelis, M. Gabriella Cusella; Campbell, Kevin P.; Bottinelli, Roberto; Cossu, Giulio (2003-07-25). "Cell Therapy of α-Sarcoglycan Null Dystrophic Mice Through Intra-Arterial Delivery of Mesoangioblasts". Science. 301 (5632): 487–492. Bibcode:2003Sci...301..487S. doi: 10.1126/science.1082254 . ISSN   0036-8075. PMID   12855815. S2CID   4602521.
  10. Sampaolesi, Maurilio; Blot, Stephane; D’Antona, Giuseppe; Granger, Nicolas; Tonlorenzi, Rossana; Innocenzi, Anna; Mognol, Paolo; Thibaud, Jean-Lauren; Galvez, Beatriz G.; Barthélémy, Ines; Perani, Laura; Mantero, Sara; Guttinger, Maria; Pansarasa, Orietta; Rinaldi, Chiara (2006-11-30). "Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs". Nature. 444 (7119): 574–579. Bibcode:2006Natur.444..574S. doi:10.1038/nature05282. ISSN   0028-0836. PMID   17108972. S2CID   62808421.
  11. Zelissen, Ruby; Ahmadian, Somaieh; Montilla-Rojo, Joaquin; Timmer, Erika; Ummelen, Monique; Hopman, Anton; Smeets, Hubert; van Tienen, Florence (2023-01-25). "Fusion of Wild-Type Mesoangioblasts with Myotubes of mtDNA Mutation Carriers Leads to a Proportional Reduction in mtDNA Mutation Load". International Journal of Molecular Sciences. 24 (3): 2679. doi: 10.3390/ijms24032679 . ISSN   1422-0067. PMC   9917062 . PMID   36769001.
  12. Olson, Eric N. (2004-05-01). "A decade of discoveries in cardiac biology". Nature Medicine. 10 (5): 467–474. doi:10.1038/nm0504-467. ISSN   1546-170X. PMID   15122248. S2CID   12686878.
  13. Galvez, B. G.; Sampaolesi, M.; Barbuti, A.; Crespi, A.; Covarello, D.; Brunelli, S.; Dellavalle, A.; Crippa, S.; Balconi, G.; Cuccovillo, I.; Molla, F.; Staszewsky, L.; Latini, R.; DiFrancesco, D.; Cossu, G. (2008-05-23). "Cardiac mesoangioblasts are committed, self-renewable progenitors, associated with small vessels of juvenile mouse ventricle". Cell Death & Differentiation. 15 (9): 1417–1428. doi: 10.1038/cdd.2008.75 . ISSN   1476-5403. PMID   18497758. S2CID   21211239.