Troponin I, cardiac muscle is a protein that in humans is encoded by the TNNI3 gene. [5] [6] It is a tissue-specific subtype of troponin I, which in turn is a part of the troponin complex.
The TNNI3 gene encoding cardiac troponin I (cTnI) is located at 19q13.4 in the human chromosomal genome. Human cTnI is a 24 kDa protein consisting of 210 amino acids with isoelectric point (pI) of 9.87. cTnI is exclusively expressed in adult cardiac muscle. [7] [8]
cTnI has diverged from the skeletal muscle isoforms of TnI (slow TnI and fast TnI) mainly with a unique N-terminal extension. The amino acid sequence of cTnI is strongly conserved among mammalian species (Fig. 1). On the other hand, the N-terminal extension of cTnI has significantly different structures among mammal, amphibian and fish. [8]
TNNI3 is expressed as a heart specific gene. [8] Early embryonic heart expresses solely slow skeletal muscle TnI. cTnI begins to express in mouse heart at approximately embryonic day 10, and the level gradually increases to one-half of the total amount of TnI in the cardiac muscle at birth. [9] cTnI completely replaces slow TnI in the mouse heart approximately 14 days after birth [10]
Based on in vitro structure-function relationship studies, the structure of cTnI can be divided into six functional segments: [11] a) a cardiac-specific N-terminal extension (residue 1–30) that is not present in fast TnI and slow TnI; b) an N-terminal region (residue 42–79) that binds the C domain of TnC; c) a TnT-binding region (residue 80–136); d) the inhibitory peptide (residue 128–147) that interacts with TnC and actin–tropomyosin; e) the switch or triggering region (residue 148–163) that binds the N domain of TnC; and f) the C-terminal mobile domain (residue 164–210) that binds actin–tropomyosin and is the most conserved segment highly similar among isoforms and across species. Partially crystal structure of human troponin has been determined. [12]
Multiple mutations in cTnI have been found to cause cardiomyopathies. [31] [32] cTnI mutations account for approximately 5% of familial hypertrophic cardiomyopathy cases and to date, more than 20 myopathic mutations of cTnI have been characterized. [15]
The half-life of cTnI in adult cardiomyocytes is estimated to be ~3.2 days and there is a pool of unassembled cardiac TnI in the cytoplasm. [33] Cardiac TnI is exclusively expressed in the myocardium and is thus a highly specific diagnostic marker for cardiac muscle injuries, and cTnI has been universally used as indicator for myocardial infarction. [34] An increased level of serum cTnI also independently predicts poor prognosis of critically ill patients in the absence of acute coronary syndrome. [35] [36]
The 2015 version of this article was updated by an external expert under a dual publication model. The corresponding academic peer reviewed article was published in Gene and can be cited as: Juan-Juan Sheng (22 October 2015). "TNNI1, TNNI2 and TNNI3: Evolution, regulation, and protein structure-function relationships". Gene . 576 (1 Pt 3): 385–394. doi:10.1016/J.GENE.2015.10.052. PMC 5798203 . PMID 26526134. |
Troponin, or the troponin complex, is a complex of three regulatory proteins that are integral to muscle contraction in skeletal muscle and cardiac muscle, but not smooth muscle. Measurements of cardiac-specific troponins I and T are extensively used as diagnostic and prognostic indicators in the management of myocardial infarction and acute coronary syndrome. Blood troponin levels may be used as a diagnostic marker for stroke or other myocardial injury that is ongoing, although the sensitivity of this measurement is low.
Phospholamban, also known as PLN or PLB, is a micropeptide protein that in humans is encoded by the PLN gene. Phospholamban is a 52-amino acid integral membrane protein that regulates the calcium (Ca2+) pump in cardiac muscle cells.
Troponin C is a protein which is part of the troponin complex. It contains four calcium-binding EF hands, although different isoforms may have fewer than four functional calcium-binding subdomains. It is a component of thin filaments, along with actin and tropomyosin. It contains an N lobe and a C lobe. The C lobe serves a structural purpose and binds to the N domain of troponin I (TnI). The C lobe can bind either Ca2+ or Mg2+. The N lobe, which binds only Ca2+, is the regulatory lobe and binds to the C domain of troponin I after calcium binding.
Troponin I is a cardiac and skeletal muscle protein family. It is a part of the troponin protein complex, where it binds to actin in thin myofilaments to hold the actin-tropomyosin complex in place. Troponin I prevents myosin from binding to actin in relaxed muscle. When calcium binds to the troponin C, it causes conformational changes which lead to dislocation of troponin I. Afterwards, tropomyosin leaves the binding site for myosin on actin leading to contraction of muscle. The letter I is given due to its inhibitory character. It is a useful marker in the laboratory diagnosis of heart attack. It occurs in different plasma concentration but the same circumstances as troponin T - either test can be performed for confirmation of cardiac muscle damage and laboratories usually offer one test or the other.
Cardiac muscle troponin T (cTnT) is a protein that in humans is encoded by the TNNT2 gene. Cardiac TnT is the tropomyosin-binding subunit of the troponin complex, which is located on the thin filament of striated muscles and regulates muscle contraction in response to alterations in intracellular calcium ion concentration.
Ryanodine receptor 2 (RYR2) is one of a class of ryanodine receptors and a protein found primarily in cardiac muscle. In humans, it is encoded by the RYR2 gene. In the process of cardiac calcium-induced calcium release, RYR2 is the major mediator for sarcoplasmic release of stored calcium ions.
Tropomyosin alpha-1 chain is a protein that in humans is encoded by the TPM1 gene. This gene is a member of the tropomyosin (Tm) family of highly conserved, widely distributed actin-binding proteins involved in the contractile system of striated and smooth muscles and the cytoskeleton of non-muscle cells.
The myosin-binding protein C, cardiac-type is a protein that in humans is encoded by the MYBPC3 gene. This isoform is expressed exclusively in heart muscle during human and mouse development, and is distinct from those expressed in slow skeletal muscle (MYBPC1) and fast skeletal muscle (MYBPC2).
Troponin C, also known as TN-C or TnC, is a protein that resides in the troponin complex on actin thin filaments of striated muscle and is responsible for binding calcium to activate muscle contraction. Troponin C is encoded by the TNNC1 gene in humans for both cardiac and slow skeletal muscle.
β-Tropomyosin, also known as tropomyosin beta chain is a protein that in humans is encoded by the TPM2 gene. β-tropomyosin is striated muscle-specific coiled coil dimer that functions to stabilize actin filaments and regulate muscle contraction.
Troponin I, slow skeletal muscle is a protein that in humans is encoded by the TNNI1 gene. It is a tissue-specific subtype of troponin I, which in turn is a part of the troponin complex.
Troponin I, fast skeletal muscle is a protein that in humans is encoded by the TNNI2 gene.
Myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC-2) also known as the regulatory light chain of myosin (RLC) is a protein that in humans is encoded by the MYL2 gene. This cardiac ventricular RLC isoform is distinct from that expressed in skeletal muscle (MYLPF), smooth muscle (MYL12B) and cardiac atrial muscle (MYL7).
Slow skeletal muscle troponin T (sTnT) is a protein that in humans is encoded by the TNNT1 gene.
Fast skeletal muscle troponin T (fTnT) is a protein that in humans is encoded by the TNNT3 gene.
Troponin C, skeletal muscle is a protein that in humans is encoded by the TNNC2 gene.
Heart-type fatty acid binding protein (hFABP) also known as mammary-derived growth inhibitor is a protein that in humans is encoded by the FABP3 gene.
TNNI3 interacting kinase is a protein that in humans is encoded by the TNNI3K gene.
Calponin 1 is a basic smooth muscle protein that in humans is encoded by the CNN1 gene.
A8V is point mutation on Troponin C (cTNC) that leads to a hypertrophic cardiomyopathy. The coordinated cardiac muscle contraction is regulated by the troponin complex on thin filament (troponin C which is calcium binding, troponin T that plays the role with tropomyosin, and troponin I which has an inhibitory action annulating the S1 ATPase activity in the presence of tropomyosin and troponin and absence of Ca2+). This mutation is determined by the change of Alanine to Valine at nucleotide 23 from C to T. Patients with this type of mutation shows thickness on the left ventricle wall of around 18 mm, compared to the normal this thickness would be 12 mm. Also, A8V affects the Ca2+ binding affinity compared to normal genotype and increased sensitivity on force development.