TPM2 | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | TPM2 , AMCD1, DA1, DA2B, HEL-S-273, NEM4, TMSB, tropomyosin 2 (beta), tropomyosin 2, DA2B4 | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | OMIM: 190990; MGI: 98810; HomoloGene: 134045; GeneCards: TPM2; OMA:TPM2 - orthologs | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
β-Tropomyosin, also known as tropomyosin beta chain is a protein that in humans is encoded by the TPM2 gene. [5] [6] β-tropomyosin is striated muscle-specific coiled coil dimer that functions to stabilize actin filaments and regulate muscle contraction.
β-tropomyosin is roughly 32 kDa in molecular weight (284 amino acids), but multiple splice variants exist. [7] [8] [9] [10] Tropomysin is a flexible protein homodimer or heterodimer composed of two alpha-helical chains, which adopt a bent coiled coil conformation to wrap around the seven actin molecules in a functional unit of muscle. It is polymerized end to end along the two grooves of actin filaments and provides stability to the filaments. [11] Tropomyosin dimers are composed of varying combinations of tropomyosin isoforms; human striated muscles express protein from the TPM1 (α-tropoomyosin), TPM2 (β-tropomyosin) and TPM3 (γ-tropomyosin) genes, with α-tropomyosin being the predominant isoform in striated muscle. Fast skeletal muscle and cardiac muscle contain more αα-homodimers, and slow skeletal muscle contains more ββ-homodimers. [12] In human cardiac muscle the ratio of α-tropomyosin to β-tropomyosin is roughly 5:1. [13] [14] It has been shown that different combinations of tropomyosin isoforms bind troponin T with differing affinities, demonstrating that isoform combinations are used to impart a specific functional impact. [12]
β-tropomyosin functions in association with α-tropomyosin and the troponin complex—composed of troponin I, troponin C and troponin T—to modulated the actin and myosin interaction. In diastole, the tropomyosin-troponin complex inhibits this interaction, and during systole the rise in intracellular calcium from sarcoplasmic reticulum binds to troponin C and induces a conformational change in the troponin-tropomyosin complex that disinhibits the actomyosin ATPase and permits contraction. [12]
Specific functional insights into the function of the β-tropomyosin isoform have come from studies employing transgenesis. A study overexpressing β-tropomyosin in adult cardiac muscle evoked a 34-fold increase in expression of β-tropomyosin, resulting in preferential formation of the αβ-tropomyosin heterodimer. Transgenic hearts showed a significant delay in relaxation time as well as a decrease in the maximum rate of left ventricular relaxation. [12] A more aggressive overexpression of β-tropomyosin (to over 75% of total tropomyosin) in the heart causes death of mice 10–14 days old, along with cardiac abnormalities, suggesting that the normal distribution of tropomyosin isoforms is critical to normal cardiac function. [15]
In a disease model of cardiac hypertrophy, β-tropomyosin was shown to be reexpressed within two days following induction of pressure overload. [16]
Studies from mice, which express 98% α-tropomyosin, have shown that α-tropomyosin can be phosphorylated at Serine-283, which is one amino acid away from the C-terminus. β-tropomyosin also has a Serine residue at position 283, [17] thus, it is likely that β-tropomyosin is also phosphorylated. Mouse transgenic studies in which the phosphorylation site in α-tropomyosin is mutated to Alanine have shown that phosphorylation may function to modulate tropomyosin polymerization, head-to-tail interactions between adjacent tropomyosin molecules, cooperativity, myosin ATPase activity, and the cardiac response to stress. [18]
A decrease in β-tropomyosin in patients with heart failure was demonstrated, as failing ventricles expressed solely α-tropomyosin. [19]
Heterozygous mutations in TPM2 have been identified in patients with congenital cap myopathy, a rare disorder defined by cap-like structures in muscle fiber periphery. [20] [21] [22] [23]
Mutations in TPM2 have also been associated with nemaline myopathy, a rare disorder characterized by muscle weakness and nemaline bodies, [24] [25] [26]
as well as distal arthrogryposis. [27] [28]
The muscle weakness observed in these patients may be due to a change in mutated TPM2 affinity for actin or decreased calcium-induced activation of contractility. [29] [30] [31] Moreover, studies unveiled alterations in cross-bridge attachment and detachment rates, [32] as well as changes in ATPase rates. [30] [33]
TPM2 has been shown to interact with:
Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in muscle fibrils. It is found in essentially all eukaryotic cells, where it may be present at a concentration of over 100 μM; its mass is roughly 42 kDa, with a diameter of 4 to 7 nm.
Troponin, or the troponin complex, is a complex of three regulatory proteins that are integral to muscle contraction in skeletal muscle and cardiac muscle, but not smooth muscle. Measurements of cardiac-specific troponins I and T are extensively used as diagnostic and prognostic indicators in the management of myocarditis, myocardial infarction and acute coronary syndrome. Blood troponin levels may be used as a diagnostic marker for stroke or other myocardial injury that is ongoing, although the sensitivity of this measurement is low.
Tropomyosin is a two-stranded alpha-helical, coiled coil protein found in many animal and fungal cells. In animals, it is an important component of the muscular system which works in conjunction with troponin to regulate muscle contraction. It is present in smooth and striated muscle tissues, which can be found in various organs and body systems, including the heart, blood vessels, respiratory system, and digestive system. In fungi, tropomyosin is found in cell walls and helps maintain the structural integrity of cells.
Nemaline myopathy is a congenital, often hereditary neuromuscular disorder with many symptoms that can occur such as muscle weakness, hypoventilation, swallowing dysfunction, and impaired speech ability. The severity of these symptoms varies and can change throughout one's life to some extent. The prevalence is estimated at 1 in 50,000 live births. It is the most common non-dystrophic myopathy.
MYH7 is a gene encoding a myosin heavy chain beta (MHC-β) isoform expressed primarily in the heart, but also in skeletal muscles. This isoform is distinct from the fast isoform of cardiac myosin heavy chain, MYH6, referred to as MHC-α. MHC-β is the major protein comprising the thick filament that forms the sarcomeres in cardiac muscle and plays a major role in cardiac muscle contraction.
Nebulin is an actin-binding protein which is localized to the thin filament of the sarcomeres in skeletal muscle. Nebulin in humans is coded for by the gene NEB. It is a very large protein and binds as many as 200 actin monomers. Because its length is proportional to thin filament length, it is believed that nebulin acts as a thin filament "ruler" and regulates thin filament length during sarcomere assembly. Other functions of nebulin, such as a role in cell signaling, remain uncertain.
Actin, alpha skeletal muscle is a protein that in humans is encoded by the ACTA1 gene.
Troponin I, cardiac muscle is a protein that in humans is encoded by the TNNI3 gene. It is a tissue-specific subtype of troponin I, which in turn is a part of the troponin complex.
Cardiac muscle troponin T (cTnT) is a protein that in humans is encoded by the TNNT2 gene. Cardiac TnT is the tropomyosin-binding subunit of the troponin complex, which is located on the thin filament of striated muscles and regulates muscle contraction in response to alterations in intracellular calcium ion concentration.
Tropomyosin alpha-1 chain is a protein that in humans is encoded by the TPM1 gene. This gene is a member of the tropomyosin (Tm) family of highly conserved, widely distributed actin-binding proteins involved in the contractile system of striated and smooth muscles and the cytoskeleton of non-muscle cells.
Actin, cytoplasmic 2, or gamma-actin is a protein that in humans is encoded by the ACTG1 gene. Gamma-actin is widely expressed in cellular cytoskeletons of many tissues; in adult striated muscle cells, gamma-actin is localized to Z-discs and costamere structures, which are responsible for force transduction and transmission in muscle cells. Mutations in ACTG1 have been associated with nonsyndromic hearing loss and Baraitser-Winter syndrome, as well as susceptibility of adolescent patients to vincristine toxicity.
Tropomyosin alpha-3 chain is a protein that in humans is encoded by the TPM3 gene.
Troponin C, also known as TN-C or TnC, is a protein that resides in the troponin complex on actin thin filaments of striated muscle and is responsible for binding calcium to activate muscle contraction. Troponin C is encoded by the TNNC1 gene in humans for both cardiac and slow skeletal muscle.
Troponin I, slow skeletal muscle is a protein that in humans is encoded by the TNNI1 gene. It is a tissue-specific subtype of troponin I, which in turn is a part of the troponin complex.
Troponin I, fast skeletal muscle is a protein that in humans is encoded by the TNNI2 gene.
Slow skeletal muscle troponin T (sTnT) is a protein that in humans is encoded by the TNNT1 gene.
Myosin heavy chain, α isoform (MHC-α) is a protein that in humans is encoded by the MYH6 gene. This isoform is distinct from the ventricular/slow myosin heavy chain isoform, MYH7, referred to as MHC-β. MHC-α isoform is expressed predominantly in human cardiac atria, exhibiting only minor expression in human cardiac ventricles. It is the major protein comprising the cardiac muscle thick filament, and functions in cardiac muscle contraction. Mutations in MYH6 have been associated with late-onset hypertrophic cardiomyopathy, atrial septal defects and sick sinus syndrome.
Myosin essential light chain (ELC), ventricular/cardiac isoform is a protein that in humans is encoded by the MYL3 gene. This cardiac ventricular/slow skeletal ELC isoform is distinct from that expressed in fast skeletal muscle (MYL1) and cardiac atrial muscle (MYL4). Ventricular ELC is part of the myosin molecule and is important in modulating cardiac muscle contraction.
Troponin C, skeletal muscle is a protein that in humans is encoded by the TNNC2 gene.
Cofilin 2 (muscle) also known as CFL2 is a protein which in humans is encoded by the CFL2 gene.