Spectrin, alpha 1

Last updated

SPTA1
Protein SPTA1 PDB 1owa.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases SPTA1 , EL2, HPP, HS3, SPH3, SPTA, Spectrin, alpha 1, spectrin alpha, erythrocytic 1
External IDs OMIM: 182860; MGI: 98385; HomoloGene: 74460; GeneCards: SPTA1; OMA:SPTA1 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_003126

NM_011465

RefSeq (protein)

NP_003117

NP_035595

Location (UCSC) Chr 1: 158.61 – 158.69 Mb Chr 1: 174 – 174.08 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Spectrin alpha chain, erythrocyte is a protein that in humans is encoded by the SPTA1 gene. [5]

Contents

Spectrin is an actin crosslinking and molecular scaffold protein that links the plasma membrane to the actin cytoskeleton, and functions in the determination of cell shape, arrangement of transmembrane proteins, and organization of organelles. It is a tetramer made up of alpha-beta dimers linked in a head-to-head arrangement. This gene is one member of a family of alpha-spectrin genes. The encoded protein is primarily composed of 22 spectrin repeats which are involved in dimer formation. It forms weaker tetramer interactions than non-erythrocytic alpha spectrin, which may increase the plasma membrane elasticity and deformability of red blood cells. Mutations in this gene result in a variety of hereditary red blood cell disorders, including elliptocytosis type 2, pyropoikilocytosis, and spherocytic hemolytic anemia. [5]

Interactions

Spectrin, alpha 1 has been shown to interact with Abl gene. [6]

Related Research Articles

<span class="mw-page-title-main">Hereditary spherocytosis</span> Genetic disorder causing red blood cells to be spherical

Hereditary spherocytosis (HS) is a congenital hemolytic disorder wherein a genetic mutation coding for a structural membrane protein phenotype causes the red blood cells to be sphere-shaped (spherocytosis), rather than the normal biconcave disk shape. This abnormal shape interferes with the cells' ability to flex during blood circulation, and also makes them more prone to rupture under osmotic stress, mechanical stress, or both. Cells with the dysfunctional proteins are degraded in the spleen, which leads to a shortage of erythrocytes and results in hemolytic anemia.

<span class="mw-page-title-main">Protein S</span>

Protein S is a vitamin K-dependent plasma glycoprotein synthesized in the liver. In the circulation, Protein S exists in two forms: a free form and a complex form bound to complement protein C4b-binding protein (C4BP). In humans, protein S is encoded by the PROS1 gene. Protein S plays a role in coagulation.

<span class="mw-page-title-main">Spectrin</span> Cytoskeletal protein

Spectrin is a cytoskeletal protein that lines the intracellular side of the plasma membrane in eukaryotic cells. Spectrin forms pentagonal or hexagonal arrangements, forming a scaffold and playing an important role in maintenance of plasma membrane integrity and cytoskeletal structure. The hexagonal arrangements are formed by tetramers of spectrin subunits associating with short actin filaments at either end of the tetramer. These short actin filaments act as junctional complexes allowing the formation of the hexagonal mesh. The protein is named spectrin since it was first isolated as a major protein component of human red blood cells which had been treated with mild detergents; the detergents lysed the cells and the hemoglobin and other cytoplasmic components were washed out. In the light microscope the basic shape of the red blood cell could still be seen as the spectrin-containing submembranous cytoskeleton preserved the shape of the cell in outline. This became known as a red blood cell "ghost" (spectre), and so the major protein of the ghost was named spectrin.

<span class="mw-page-title-main">Hereditary elliptocytosis</span> Medical condition

Hereditary elliptocytosis, also known as ovalocytosis, is an inherited blood disorder in which an abnormally large number of the person's red blood cells are elliptical rather than the typical biconcave disc shape. Such morphologically distinctive erythrocytes are sometimes referred to as elliptocytes or ovalocytes. It is one of many red-cell membrane defects. In its severe forms, this disorder predisposes to haemolytic anaemia. Although pathological in humans, elliptocytosis is normal in camelids.

<span class="mw-page-title-main">Hereditary pyropoikilocytosis</span> Medical condition

Hereditary pyropoikilocytosis (HPP) is an autosomal recessive form of hemolytic anemia characterized by an abnormal sensitivity of red blood cells to heat and erythrocyte morphology similar to that seen in thermal burns or from prolonged exposure of a healthy patient's blood sample to high ambient temperatures. Patients with HPP tend to experience severe hemolysis and anemia in infancy that gradually improves, evolving toward typical elliptocytosis later in life. However, the hemolysis can lead to rapid sequestration and destruction of red cells. Splenectomy is curative when this occurs.

<span class="mw-page-title-main">Protein 4.1</span> Protein-coding gene in the species Homo sapiens

Protein 4.1,, is a protein associated with the cytoskeleton that in humans is encoded by the EPB41 gene. Protein 4.1 is a major structural element of the erythrocyte membrane skeleton. It plays a key role in regulating membrane physical properties of mechanical stability and deformability by stabilizing spectrin-actin interaction. Protein 4.1 interacts with spectrin and short actin filaments to form the erythrocyte membrane skeleton. Mutations of spectrin and protein 4.1 are associated with elliptocytosis or spherocytosis and anemia of varying severity.

<span class="mw-page-title-main">Protein 4.2</span> Protein-coding gene in the species Homo sapiens

Erythrocyte membrane protein band 4.2 is a protein that in humans is encoded by the EPB42 gene. It is part of the red blood cell cytoskeleton.

<span class="mw-page-title-main">CD135</span> Protein found in humans

Cluster of differentiation antigen 135 (CD135) also known as fms like tyrosine kinase 3, receptor-type tyrosine-protein kinase FLT3, or fetal liver kinase-2 (Flk2) is a protein that in humans is encoded by the FLT3 gene. FLT3 is a cytokine receptor which belongs to the receptor tyrosine kinase class III. CD135 is the receptor for the cytokine Flt3 ligand (FLT3L).

<span class="mw-page-title-main">UNC13D</span> Protein-coding gene in the species Homo sapiens

Protein unc-13 homolog D, also known as munc13-4, is a protein that in humans is encoded by the UNC13D gene.

<span class="mw-page-title-main">Transferrin receptor 2</span> Mammalian protein found in Homo sapiens

Transferrin receptor 2 (TfR2) is a protein that in humans is encoded by the TFR2 gene. This protein is involved in the uptake of transferrin-bound iron into cells by endocytosis, although its role is minor compared to transferrin receptor 1.

<span class="mw-page-title-main">HBG1</span>

Hemoglobin subunit gamma-1 is a protein that in humans is encoded by the HBG1 gene.

<span class="mw-page-title-main">ADD1</span> Protein-coding gene in the species Homo sapiens

Alpha-adducin is a protein that in humans is encoded by the ADD1 gene.

<span class="mw-page-title-main">SPTB</span> Protein-coding gene in the species Homo sapiens

Spectrin beta chain, erythrocyte is a protein that in humans is encoded by the SPTB gene.

<span class="mw-page-title-main">GP1BB</span> Protein-coding gene in the species Homo sapiens

Glycoprotein Ib (platelet), beta polypeptide (GP1BB) also known as CD42c, is a protein that in humans is encoded by the GP1BB gene.

<span class="mw-page-title-main">ADD2</span> Protein-coding gene in the species Homo sapiens

Beta-adducin is a protein that in humans is encoded by the ADD2 gene.

<span class="mw-page-title-main">Basal cell adhesion molecule</span> Protein-coding gene in the species Homo sapiens

Basal cell adhesion molecule, also known as Lutheran antigen, is a plasma membrane glycoprotein that in humans is encoded by the BCAM gene. BCAM has also recently been designated CD239.

<span class="mw-page-title-main">ADD3</span> Protein-coding gene in the species Homo sapiens

Gamma-adducin is a protein that in humans is encoded by the ADD3 gene.

<span class="mw-page-title-main">SPTBN4</span> Protein-coding gene in the species Homo sapiens

Spectrin, beta, non-erythrocytic 4, also known as SPTBN4, is a protein that in humans is encoded by the SPTBN4 gene.

<span class="mw-page-title-main">Ankyrin-1</span> Protein-coding gene in the species Homo sapiens

Ankyrin 1, also known as ANK-1, and erythrocyte ankyrin, is a protein that in humans is encoded by the ANK1 gene.

<span class="mw-page-title-main">Stomatin</span> Mammalian protein found in Homo sapiens

Stomatin also known as human erythrocyte integral membrane protein band 7 is a protein that in humans is encoded by the STOM gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000163554 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000026532 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "Entrez Gene: SPTA1 spectrin, alpha, erythrocytic 1 (elliptocytosis 2)".
  6. Ziemnicka-Kotula, D; Xu J; Gu H; Potempska A; Kim K S; Jenkins E C; Trenkner E; Kotula L (May 1998). "Identification of a candidate human spectrin Src homology 3 domain-binding protein suggests a general mechanism of association of tyrosine kinases with the spectrin-based membrane skeleton". J. Biol. Chem. 273 (22). UNITED STATES: 13681–92. doi: 10.1074/jbc.273.22.13681 . ISSN   0021-9258. PMID   9593709.

Further reading