Dystroglycan

Last updated
DAG1
Protein DAG1 PDB 1u2c.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases DAG1 , 156DAG, A3a, AGRNR, DAG, MDDGC7, MDDGC9, MDDGA9, dystroglycan 1, LGMDR16
External IDs OMIM: 128239 MGI: 101864 HomoloGene: 3234 GeneCards: DAG1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)
RefSeq (protein)
Location (UCSC) Chr 3: 49.47 – 49.54 Mb Chr 9: 108.08 – 108.14 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Dystroglycan is a protein that in humans is encoded by the DAG1 gene. [5] [6] [7]

Dystroglycan is one of the dystrophin-associated glycoproteins, which is encoded by a 5.5 kb transcript in Homo sapiens on chromosome 3. [8] There are two exons that are separated by a large intron. The spliced exons code for a protein product that is finally cleaved into two non-covalently associated subunits, [alpha] (N-terminal) and [beta] (C-terminal).

Function

In skeletal muscle the dystroglycan complex works as a transmembrane linkage between the extracellular matrix and the cytoskeleton. [alpha]-dystroglycan is extracellular and binds to merosin [alpha]-2 laminin in the basement membrane, while [beta]-dystroglycan is a transmembrane protein and binds to dystrophin, which is a large rod-like cytoskeletal protein, absent in Duchenne muscular dystrophy patients. Dystrophin binds to intracellular actin cables. In this way, the dystroglycan complex, which links the extracellular matrix to the intracellular actin cables, is thought to provide structural integrity in muscle tissues. The dystroglycan complex is also known to serve as an agrin receptor in muscle, where it may regulate agrin-induced acetylcholine receptor clustering at the neuromuscular junction. There is also evidence which suggests the function of dystroglycan as a part of the signal transduction pathway because it is shown that Grb2, a mediator of the Ras-related signal pathway, can interact with the cytoplasmic domain of dystroglycan.

Expression

Dystroglycan is widely distributed in non-muscle tissues as well as in muscle tissues. During epithelial morphogenesis of kidney, the dystroglycan complex is shown to act as a receptor for the basement membrane. Dystroglycan expression in Mus musculus brain and neural retina has also been reported. However, the physiological role of dystroglycan in non-muscle tissues remains unclear.

In December 2022, the implications of abnormal dystroglycan expression and/or O-mannosylation on the pathogenesis of cancer have been reviewed. [9]

Interactions

Dystroglycan has been shown to interact with FYN, [10] C-src tyrosine kinase, [10] Src, [10] NCK1, [10] Grb2, [11] Caveolin 3 [12] and SHC1. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Laminin</span> Protein in the extracellular matrix

Laminins are a family of glycoproteins of the extracellular matrix of all animals. They are major constituents of the basement membrane, namely the basal lamina. Laminins are vital to biological activity, influencing cell differentiation, migration, and adhesion.

<span class="mw-page-title-main">Beta-2 adrenergic receptor</span> Mammalian protein found in humans

The beta-2 adrenergic receptor, also known as ADRB2, is a cell membrane-spanning beta-adrenergic receptor that binds epinephrine (adrenaline), a hormone and neurotransmitter whose signaling, via adenylate cyclase stimulation through trimeric Gs proteins, increases cAMP, and, via downstream L-type calcium channel interaction, mediates physiologic responses such as smooth muscle relaxation and bronchodilation.

<span class="mw-page-title-main">GRB2</span> Protein-coding gene in the species Homo sapiens

Growth factor receptor-bound protein 2, also known as Grb2, is an adaptor protein involved in signal transduction/cell communication. In humans, the GRB2 protein is encoded by the GRB2 gene.

<span class="mw-page-title-main">Costamere</span> Component of striated muscle cells

The costamere is a structural-functional component of striated muscle cells which connects the sarcomere of the muscle to the cell membrane.

<span class="mw-page-title-main">Integrin beta 1</span> Mammalian protein found in Homo sapiens

Integrin beta-1 (ITGB1), also known as CD29, is a cell surface receptor that in humans is encoded by the ITGB1 gene. This integrin associates with integrin alpha 1 and integrin alpha 2 to form integrin complexes which function as collagen receptors. It also forms dimers with integrin alpha 3 to form integrin receptors for netrin 1 and reelin. These and other integrin beta 1 complexes have been historically known as very late activation (VLA) antigens.

Dystrobrevin is a protein that binds to dystrophin in the costamere of skeletal muscle cells. In humans, there are at least two isoforms of dystrobrevin, dystrobrevin alpha and dystrobrevin beta.

<span class="mw-page-title-main">RAPGEF1</span> Protein-coding gene in the species Homo sapiens

Rap guanine nucleotide exchange factor 1 is a protein that in humans is encoded by the RAPGEF1 gene.

<span class="mw-page-title-main">RAPSN</span> Protein-coding gene in the species Homo sapiens

43 kDa receptor-associated protein of the synapse (rapsyn) is a protein that in humans is encoded by the RAPSN gene.

<span class="mw-page-title-main">Integrin beta 4</span> Protein-coding gene in the species Homo sapiens

Integrin, beta 4 (ITGB4) also known as CD104, is a human gene.

<span class="mw-page-title-main">Laminin, alpha 5</span> Protein-coding gene in the species Homo sapiens

Laminin subunit alpha-5 is a protein that in humans is encoded by the LAMA5 gene.

<span class="mw-page-title-main">Laminin subunit alpha-1</span> Protein-coding gene in the species Homo sapiens

Laminin subunit alpha-1 is a protein that in humans is encoded by the LAMA1 gene.

<span class="mw-page-title-main">Syntrophin, alpha 1</span> Protein-coding gene in the species Homo sapiens

Alpha-1-syntrophin is a protein that in humans is encoded by the SNTA1 gene. Alpha-1 syntrophin is a signal transducing adaptor protein and serves as a scaffold for various signaling molecules. Alpha-1 syntrophin contains a PDZ domain, two Pleckstrin homology domain and a 'syntrophin unique' domain.

<span class="mw-page-title-main">Integrin alpha 7</span>

Alpha-7 integrin is a protein that in humans is encoded by the ITGA7 gene. Alpha-7 integrin is critical for modulating cell-matrix interactions. Alpha-7 integrin is highly expressed in cardiac muscle, skeletal muscle and smooth muscle cells, and localizes to Z-disc and costamere structures. Mutations in ITGA7 have been associated with congenital myopathies and noncompaction cardiomyopathy, and altered expression levels of alpha-7 integrin have been identified in various forms of muscular dystrophy.

<span class="mw-page-title-main">SGCB</span> Protein-coding gene in the species Homo sapiens

Beta-sarcoglycan is a protein that in humans is encoded by the SGCB gene.

<span class="mw-page-title-main">Laminin, beta 2</span> Protein-coding gene in the species Homo sapiens

Laminin subunit beta-2 is a protein that in humans is encoded by the LAMB2 gene.

<span class="mw-page-title-main">SGCA</span> Protein-coding gene in the species Homo sapiens

Alpha-sarcoglycan is a protein that in humans is encoded by the SGCA gene.

<span class="mw-page-title-main">SNTB1</span> Protein-coding gene in the species Homo sapiens

Beta-1-syntrophin is a protein that in humans is encoded by the SNTB1 gene.

<span class="mw-page-title-main">Dystrobrevin alpha</span> Protein found in humans

Dystrobrevin alpha is a protein that in humans is encoded by the DTNA gene.

<span class="mw-page-title-main">Pikachurin</span> Protein-coding gene in the species Homo sapiens

Pikachurin, also known as AGRINL (AGRINL) and EGF-like, fibronectin type-III and laminin G-like domain-containing protein (EGFLAM), is a protein that in humans is encoded by the EGFLAM gene.

<span class="mw-page-title-main">Dystrobrevin beta</span> Protein-coding gene in the species Homo sapiens

Dystrobrevin beta is a protein which in humans is encoded by the DTNB gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000173402 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000039952 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Skynner MJ, Gangadharan U, Coulton GR, Mason RM, Nikitopoulou A, Brown SD, Blanco G (January 1995). "Genetic mapping of the mouse neuromuscular mutation kyphoscoliosis". Genomics. 25 (1): 207–213. doi:10.1016/0888-7543(95)80127-8. PMID   7774920.
  6. Ibraghimov-Beskrovnaya O, Ervasti JM, Leveille CJ, Slaughter CA, Sernett SW, Campbell KP (February 1992). "Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix". Nature. 355 (6362): 696–702. Bibcode:1992Natur.355..696I. doi:10.1038/355696a0. PMID   1741056. S2CID   4273337.
  7. "Entrez Gene: DAG1 dystroglycan 1 (dystrophin-associated glycoprotein 1)".
  8. Spence HJ, Dhillon AS, James M, Winder SJ (May 2004). "Dystroglycan, a scaffold for the ERK-MAP kinase cascade". EMBO Reports. 5 (5): 484–489. doi:10.1038/sj.embor.7400140. PMC   1299052 . PMID   15071496.
  9. Quereda C, Pastor À, Martín-Nieto J (December 2022). "Involvement of abnormal dystroglycan expression and matriglycan levels in cancer pathogenesis". Cancer Cell International. 22 (1): 395. doi: 10.1186/s12935-022-02812-7 . PMC   9733019 . PMID   36494657.
  10. 1 2 3 4 5 Sotgia F, Lee H, Bedford MT, Petrucci T, Sudol M, Lisanti MP (December 2001). "Tyrosine phosphorylation of beta-dystroglycan at its WW domain binding motif, PPxY, recruits SH2 domain containing proteins". Biochemistry. 40 (48): 14585–14592. doi:10.1021/bi011247r. PMID   11724572.
  11. Yang B, Jung D, Motto D, Meyer J, Koretzky G, Campbell KP (May 1995). "SH3 domain-mediated interaction of dystroglycan and Grb2". The Journal of Biological Chemistry. 270 (20): 11711–11714. doi: 10.1074/jbc.270.20.11711 . PMID   7744812.
  12. Sotgia F, Lee JK, Das K, Bedford M, Petrucci TC, Macioce P, et al. (December 2000). "Caveolin-3 directly interacts with the C-terminal tail of beta -dystroglycan. Identification of a central WW-like domain within caveolin family members". The Journal of Biological Chemistry. 275 (48): 38048–38058. doi: 10.1074/jbc.M005321200 . PMID   10988290.

Further reading