Destrin

Last updated
Destrin (actin binding protein)
Destrin.png
Nuclear magnetic resonance determined configuration of the tertiary structure of Destrin. [1]
Identifiers
SymbolDSTN
Alt. symbolsADF
NCBI gene 11034
HGNC 15750
OMIM 609114
RefSeq NM_006870
UniProt P60981
Other data
Locus Chr. 20 p12.1
Search for
Structures Swiss-model
Domains InterPro

Destrin or DSTN (also known as actin depolymerizing factor or ADF) is a protein which in humans is encoded by the DSTN gene. [2] [3] [4] Destrin is a component protein in microfilaments.

Contents

The product of this gene belongs to the actin-binding proteins ADF (Actin-Depolymerizing Factor)/cofilin family. This family of proteins is responsible for enhancing the turnover rate of actin in vivo. This gene encodes the actin depolymerizing protein that severs actin filaments (F-actin) and binds to actin monomers (G-actin). Two transcript variants encoding distinct isoforms have been identified for this gene. [2]

Structure

The tertiary structure of destrin was determined by the use of triple-resonance multidimensional nuclear magnetic resonance, NMR. [1] The secondary and tertiary structures of destrin are similar to the gelsolin family which is another actin-regulating protein family.

There are three ordered layers to destrin which is a globular protein. There is a central β sheet that is composed of one parallel strand and three antiparallel strands. This β sheet is between a long α helix along with a shorter one and two shorter helices on the opposite side. The four helices are parallel to the β strands. [1]

Function

In a variety of eukaryotes, destrin regulates actin in the cytoskeleton. Destrin binds actin and is thought to connect it as gelsolin segment-1 does. Furthermore, the binding of actin by destrin and cofilin is regulated negatively by phosphorylation. Destrin can also sever actin filaments. [1]

Related Research Articles

<span class="mw-page-title-main">Microfilament</span> Filament in the cytoplasm of eukaryotic cells

Microfilaments, also called actin filaments, are protein filaments in the cytoplasm of eukaryotic cells that form part of the cytoskeleton. They are primarily composed of polymers of actin, but are modified by and interact with numerous other proteins in the cell. Microfilaments are usually about 7 nm in diameter and made up of two strands of actin. Microfilament functions include cytokinesis, amoeboid movement, cell motility, changes in cell shape, endocytosis and exocytosis, cell contractility, and mechanical stability. Microfilaments are flexible and relatively strong, resisting buckling by multi-piconewton compressive forces and filament fracture by nanonewton tensile forces. In inducing cell motility, one end of the actin filament elongates while the other end contracts, presumably by myosin II molecular motors. Additionally, they function as part of actomyosin-driven contractile molecular motors, wherein the thin filaments serve as tensile platforms for myosin's ATP-dependent pulling action in muscle contraction and pseudopod advancement. Microfilaments have a tough, flexible framework which helps the cell in movement.

<span class="mw-page-title-main">Actin</span> Family of proteins

Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in muscle fibrils. It is found in essentially all eukaryotic cells, where it may be present at a concentration of over 100 μM; its mass is roughly 42 kDa, with a diameter of 4 to 7 nm.

Actin-binding proteins are proteins that bind to actin. This may mean ability to bind actin monomers, or polymers, or both.

<span class="mw-page-title-main">ADF/Cofilin family</span>

ADF/cofilin is a family of actin-binding proteins associated with the rapid depolymerization of actin microfilaments that give actin its characteristic dynamic instability. This dynamic instability is central to actin's role in muscle contraction, cell motility and transcription regulation.

<span class="mw-page-title-main">Gelsolin</span> Mammalian protein found in Homo sapiens

Gelsolin is an actin-binding protein that is a key regulator of actin filament assembly and disassembly. Gelsolin is one of the most potent members of the actin-severing gelsolin/villin superfamily, as it severs with nearly 100% efficiency.

<span class="mw-page-title-main">Cofilin 1</span> Protein-coding gene in the species Homo sapiens

Cofilin 1 , also known as CFL1, is a human gene, part of the ADF/cofilin family.

LIM kinase-1 (LIMK1) and LIM kinase-2 (LIMK2) are actin-binding kinases that phosphorylate members of the ADF/cofilin family of actin binding and filament severing proteins. ADF/cofilin are the only substrates yet identified for the LIM kinases. LIM kinases directly phosphorylate and inactivate members of the cofilin family, resulting in stabilization of filamentous (F)-actin. Lim kinases are activated by signaling through small GTPases of the Rho family. Upstream, LIMK1 is regulated by Pak1, and LIMK2 by the Rho-dependent kinase ROCK. Lim Kinases are activated by PAK. Recent work indicates that LIMK activity is also modulated by HIV-1 viral proteins.

CapZ, also known as CAPZ, CAZ1 and CAPPA1, is a capping protein that caps the barbed end of actin filaments in muscle cells.

<span class="mw-page-title-main">LIM domain</span> InterPro Domain

LIM domains are protein structural domains, composed of two contiguous zinc fingers, separated by a two-amino acid residue hydrophobic linker. The domain name is an acronym of the three genes in which it was first identified. LIM is a protein interaction domain that is involved in binding to many structurally and functionally diverse partners. The LIM domain appeared in eukaryotes sometime prior to the most recent common ancestor of plants, fungi, amoeba and animals. In animal cells, LIM domain-containing proteins often shuttle between the cell nucleus where they can regulate gene expression, and the cytoplasm where they are usually associated with actin cytoskeletal structures involved in connecting cells together and to the surrounding matrix, such as stress fibers, focal adhesions and adherens junctions.

<span class="mw-page-title-main">SSH1</span> Protein-coding gene in the species Homo sapiens

For the SSH-1 protocol, see Secure Shell#Version 1

<span class="mw-page-title-main">Macrophage-capping protein</span> Protein-coding gene in the species Homo sapiens

Macrophage-capping protein (CAPG) also known as actin regulatory protein CAP-G is a protein that in humans is encoded by the CAPG gene.

<span class="mw-page-title-main">SSH2</span> Protein-coding gene in the species Homo sapiens

Protein phosphatase Slingshot homolog 2 is an enzyme that in humans is encoded by the SSH2 gene.

<span class="mw-page-title-main">SSH3</span> Protein-coding gene in the species Homo sapiens

Protein phosphatase Slingshot homolog 3 is an enzyme that in humans is encoded by the SSH3 gene.

<span class="mw-page-title-main">Cofilin-2</span> Protein-coding gene in the species Homo sapiens

Cofilin 2 (muscle) also known as CFL2 is a protein which in humans is encoded by the CFL2 gene.

Actin remodeling is a biochemical process in cells. In the actin remodeling of neurons, the protein actin is part of the process to change the shape and structure of dendritic spines. G-actin is the monomer form of actin, and is uniformly distributed throughout the axon and the dendrite. F-actin is the polymer form of actin, and its presence in dendritic spines is associated with their change in shape and structure. Actin plays a role in the formation of new spines as well as stabilizing spine volume increase. The changes that actin brings about lead to the formation of new synapses as well as increased cell communication.

Actin remodeling is the biochemical process that allows for the dynamic alterations of cellular organization. The remodeling of actin filaments occurs in a cyclic pattern on cell surfaces and exists as a fundamental aspect to cellular life. During the remodeling process, actin monomers polymerize in response to signaling cascades that stem from environmental cues. The cell's signaling pathways cause actin to affect intracellular organization of the cytoskeleton and often consequently, the cell membrane. Again triggered by environmental conditions, actin filaments break back down into monomers and the cycle is completed. Actin-binding proteins (ABPs) aid in the transformation of actin filaments throughout the actin remodeling process. These proteins account for the diverse structure and changes in shape of Eukaryotic cells. Despite its complexity, actin remodeling may result in complete cytoskeletal reorganization in under a minute.

<span class="mw-page-title-main">Cyclase-associated protein family</span>

In molecular biology, the cyclase-associated protein family (CAP) is a family of highly conserved actin-binding proteins present in a wide range of organisms including yeast, flies, plants, and mammals. CAPs are multifunctional proteins that contain several structural domains. CAP is involved in species-specific signalling pathways. In Drosophila, CAP functions in Hedgehog-mediated eye development and in establishing oocyte polarity. In Dictyostelium discoideum, CAP is involved in microfilament reorganisation near the plasma membrane in a PIP2-regulated manner and is required to perpetuate the cAMP relay signal to organise fruitbody formation. In plants, CAP is involved in plant signalling pathways required for co-ordinated organ expansion. In yeast, CAP is involved in adenylate cyclase activation, as well as in vesicle trafficking and endocytosis. In both yeast and mammals, CAPs appear to be involved in recycling G-actin monomers from ADF/cofilins for subsequent rounds of filament assembly. In mammals, there are two different CAPs that share 64% amino acid identity.

<span class="mw-page-title-main">ADF-H domain</span>

In molecular biology, ADF-H domain is an approximately 150 amino acid motif that is present in three phylogenetically distinct classes of eukaryotic actin-binding proteins.

<span class="mw-page-title-main">Plasma gelsolin</span>

Plasma gelsolin (pGSN) is an 83 kDa abundant protein constituent of normal plasma and an important component of the innate immune system. The identification of pGSN in Drosophila melanogaster and C. elegans points to an ancient origin early in evolution. Its extraordinary structural conservation reflects its critical regulatory role in multiple essential functions. Its roles include the breakdown of filamentous actin released from dead cells, activation of macrophages, and localization of the inflammatory response. Substantial decreases in plasma levels are observed in acute and chronic infection and injury in both animal models and in humans. Supplementation therapies with recombinant human pGSN have been shown effective in more than 20 animal models.

An actin nucleation core is a protein trimer with three actin monomers. It is called a nucleation core because it leads to the energetically favorable elongation reaction once a tetramer is formed from a trimer. Actin protein dimers and trimers are energetically unfavorable.Actin nucleators like the Arp2/3 complex of proteins from the formin family are most frequently involved in this process. Actin nucleation factors start the polymerization of actin within cells.

References

  1. 1 2 3 4 PDB: 1AK6 ; Hatanaka H, Ogura K, Moriyama K, Ichikawa S, Yahara I, Inagaki F (June 1996). "Tertiary structure of destrin and structural similarity between two actin-regulating protein families". Cell. 85 (7): 1047–55. doi: 10.1016/S0092-8674(00)81305-7 . PMID   8674111. S2CID   11470231.
  2. 1 2 "Entrez Gene: Destrin".
  3. Hawkins M, Pope B, Maciver SK, Weeds AG (September 1993). "Human actin depolymerizing factor mediates a pH-sensitive destruction of actin filaments". Biochemistry. 32 (38): 9985–93. doi:10.1021/bi00089a014. PMID   8399167.
  4. Deloukas P, Matthews LH, Ashurst J, et al. (2001). "The DNA sequence and comparative analysis of human chromosome 20". Nature. 414 (6866): 865–71. Bibcode:2001Natur.414..865D. doi: 10.1038/414865a . PMID   11780052.

This article incorporates text from the United States National Library of Medicine, which is in the public domain.