Myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC-2) also known as the regulatory light chain of myosin (RLC) is a protein that in humans is encoded by the MYL2 gene. [5] [6] This cardiac ventricular RLC isoform is distinct from that expressed in skeletal muscle (MYLPF), smooth muscle (MYL12B) and cardiac atrial muscle (MYL7). [7]
Ventricular myosin light chain-2 (MLC-2v) refers to the ventricular cardiac muscle form of myosin light chain 2 (Myl2). MLC-2v is a 19-KDa protein composed of 166 amino acids, that belongs to the EF-hand Ca2+ binding superfamily. [8] MLC-2v interacts with the neck/tail region of the muscle thick filament protein myosin to regulate myosin motility and function. [9]
Cardiac, ventricular RLC is an 18.8 kDa protein composed of 166 amino acids. [10] [11] RLC and the second ventricular light chain, essential light chain (ELC, MYL3), are non-covalently bound to IQXXXRGXXXR motifs in the 9 nm S1-S2 lever arm of the myosin head, [12] both alpha (MYH6) and beta (MYH7) isoforms. Both light chains are members of the EF-hand superfamily of proteins, which possess two helix-loop-helix motifs in two globular domains connected by an alpha-helical linker.
The N-terminal EF-hand domain of RLC binds calcium/magnesium at activating concentrations, [13] however the dissociation rate is too slow to modulate cardiac contractility on a beat-by-beat basis. [14] Perturbing the calcium binding region of RLC through site-directed mutagenesis (D47A) decreased tension and stiffness in isolated, skinned skeletal muscle fibers, [15] suggesting that the conformational change induced by calcium binding to RLC is functionally important. [16]
Another mode of RLC modulation lies in its ability to be modified by phosphorylation and deamidation in the N-terminal region, resulting in significant charge alterations of the protein. RLC is phosphorylated by a cardiac-specific myosin light chain kinase (MYLK3), which was recently cloned. [17] Studies have supported a role for myosin phosphatase targeting subunit 2 (MYPT2, PPP1R12B) in the dephosphorylation of RLC. [18] Human RLC has an Asparagine at position 14 (Threonine in mouse) and a Serine at position 15 (same in mouse). Endogenous RLC exists as a mixture of unmodified (typically ~50%), singly-modified (either N14 deamidation or S15 phosphorylation) and doubly modified (N14 deamidation and S15 phosphorylation) protein. [7] Both deamidation and phosphorylation contribute negative charge to the N-terminal region of RLC, undoubtedly altering its interaction with the C-terminal myosin alpha helical domain. Functional studies have supported a role for RLC phosphorylation in modulating cardiac myosin crossbridge kinetics. It is well established that RLC phosphorylation enhances myofilament sensitivity to calcium in isometrically-contracting, skinned cardiac fibers. [19] [20] It was also demonstrated that a lack of RLC phosphorylation decreases tension cost (isometric force/ATPase rate at a given pCa), suggesting that RLC phosphorylation augments cycling kinetics of myosin. [21] It has been proposed that RLC phosphorylation promotes a "swing-out" of myosin heads, facilitating weak-to-strong crossbridge binding to actin per unit calcium. [22] Additional insights regarding RLC phosphorylation in beating hearts have come from in vivo studies. Adult mice expressing a non-phosphorylatable cardiac RLC (TG-RLC(P-)) exhibited significant decreases in load-dependent [23] and load-independent measures of contractility. [21] In TG-RLC(P-), the time for the heart to reach peak elastance during ejection was elongated, ejection capacity was decreased and the inotropic response to dobutamine was blunted. [21] It is also clear that ablation of RLC phosphorylation in vivo induces alterations in the phosphorylation of other sarcomeric proteins, namely cardiac myosin binding protein C and cardiac troponin I. Moreover, RLC phosphorylation, specifically, appears to be necessary for a normal inotropic response to dobutamine. [21] In agreement with these findings, a second in vivo model, cardiac myosin light chain kinase (MYLK3) knockout (cMLCK neo/neo), showed depressed fractional shortening, progressing to left ventricular hypertrophy by 4–5 months of age. [24] Taken together, these studies clearly demonstrate that RLC phosphorylation regulates cardiac dynamics in beating hearts, and is critical for eliciting a normal sympathetic response.
MLC-2v plays an essential role in early embryonic cardiac development and function. [25] and represents one of the earliest markers of ventricular specification. [26] During early development (E7.5-8.0), MLC-2v is expressed within the cardiac crescent. The expression pattern of MLC-2v becomes restricted to the ventricular segment of the linear heart tube at E8.0 and remains restricted within the ventricle into adulthood. [26] [27]
Recent studies have highlighted a critical role for MLC2v phosphorylation in cardiac torsion, function and disease. [28] In cardiac muscle, the critical phosphorylation sites have been identified as Ser14/Ser15 in the mouse heart and Ser15 in the human heart. [29] The major kinase responsible for MLC-2v phosphorylation has been identified as cardiac myosin light chain kinase (MLCK), encoded for by Mylk3. [29] [30] Loss of cardiac MLCK in mice results in loss of cardiac MLC-2v phosphorylation and cardiac abnormalities. [24] [31]
Mutations in MYL2 have been associated with familial hypertrophic cardiomyopathy (FHC). Ten FHC mutations have been identified in RLC: E22K, A13T, N47K, P95A, F18L, R58Q, IVS6-1G>C, L103E, IVS5-2A>G, D166V. The first three-E22K, A13T and N47K-have been associated with an unusual mid-ventricular chamber obstruction type of hypertrophy. [32] [33] Three mutations-R58Q, D166V and IVS5-2-are associated with more malignant outcomes, manifesting with sudden cardiac death or at earlier ages. [34] [35] [36] [37] Functional studies demonstrate that FHC mutations in RLC affect its ability to both be phosphorylated and to bind calcium/magnesium. [38]
MLC-2v plays an important role in cross-bridge cycling kinetics and cardiac muscle contraction. [39] MLC-2v phosphorylation at Ser14 and Ser15 increases myosin lever arm stiffness and promotes myosin head diffusion, which altogether slow down myosin kinetics and prolong the duty cycle as a means to fine-tune myofilament Ca2+ sensitivity to force. [39]
A gradient in the levels of both MLC2v phosphorylation and its kinase, cardiac MLCK, has been shown to exist across the human heart from endocardium (low phosphorylation) to epicardium (high phosphorylation). [40] The existence of this gradient has been proposed to impact cardiac torsion due to the relative spatial orientation of endocardial versus epicardial myofibers. [40] In support of this, recent studies have shown that MLC-2v phosphorylation is critical in regulating left ventricular torsion. [31] [39] Variations in myosin cycling kinetics and contractile properties as a result of differential MLC-2v phosphorylation (Ser14/15) influence both epicardial and endocardial myofiber tension development and recovery to control cardiac torsion and myofiber strain mechanics. [31] [39]
A number of human studies have implicated loss of MLC-2v phosphorylation in the pathogenesis of human dilated cardiomyopathy and heart failure. [29] [41] [42] [43] [44] MLC-2v dephosphorylation has also been reported in human patients carrying a rare form of familial hypertrophic cardiomyopathy (FHC) based on specific MLC-2v and MLCK mutations. [16] [40] [45]
MLC-2v plays a key role in the regulation of cardiac muscle contraction, through its interactions with myosin. [28] Loss of MLC-2v in mice is associated with ultrastructural defects in sarcomere assembly and results in dilated cardiomyopathy and heart failure with reduced ejection fraction, leading to embryonic lethality at E12.5. [25] More recently, a mutation in zebrafish tell tale heart (telm225) that encodes MLC-2, demonstrated that cardiac MLC-2 is required for thick filament stabilization and contractility in the embryonic zebrafish heart. [46]
The role of Myl2 mutations in pathogenesis has been determined through the generation of a number of mouse models. [39] [47] [48] Transgenic mice overexpressing the human MLC-2v R58Q mutation, which is associated with FHC has been shown to lead to a reduction in MLC-2v phosphorylation in hearts. [47] These mice exhibited features of FHC, including diastolic dysfunction that progressed with age. [47] Similarly, cardiac overexpression of another FHC-associated MLC-2v mutation (D166V) results in loss of MLC-2v phosphorylation in mouse hearts. [48] In addition to these findings, MLC-2v dephosphorylation in mice results in cardiac dilatation and dysfunction associated with features reminiscent of dilated cardiomyopathy, leading to heart failure and premature death. [18] [31] [39] Altogether these studies highlight a role for MLC-2v phosphorylation in adult heart function. These studies also suggest that torsion defects might be an early manifestation of dilated cardiomyopathy consequent to loss of MLC-2v phosphorylation. [39] MLC-2v also plays an important role in cardiac stress associated with hypertrophy. [31] [39] In a novel MLC2v Ser14Ala/Ser15Ala knockin mouse model, complete loss of MLC2v (Ser14/Ser15) phosphorylation led to a worsened and differential (eccentric as opposed to concentric) response to pressure overload-induced hypertrophy. [39] In addition, mice lacking cardiac MLCK display heart failure and experience premature death in response to both pressure overload and swimming induced hypertrophy. [31] Consistent with these findings, a cardiac-specific transgenic mouse model overexpressing cardiac MLCK attenuated the response to cardiac hypertrophy induced by pressure overload. [31] Furthermore, in a cardiac-specific transgenic mouse model overexpressing skeletal myosin light chain kinase, the response to cardiac hypertrophy induced by treadmill exercise or isoproterenol was also attenuated. [49] These studies further highlight the therapeutic potential of increasing MLC-2v phosphorylation in settings of cardiac pathological stress.
The 2015 version of this article was updated by an external expert under a dual publication model. The corresponding academic peer reviewed article was published in Gene and can be cited as: Farah Sheikh; Robert C Lyon; Ju Chen (12 June 2015). "Functions of myosin light chain-2 (MYL2) in cardiac muscle and disease". Gene . Gene Wiki Review Series. 569 (1): 14–20. doi:10.1016/J.GENE.2015.06.027. ISSN 0378-1119. PMC 4496279 . PMID 26074085. Wikidata Q35832615. (erratum) |
Smooth muscle is an involuntary non-striated muscle, so-called because it has no sarcomeres and therefore no striations. It is divided into two subgroups, single-unit and multiunit smooth muscle. Within single-unit muscle, the whole bundle or sheet of smooth muscle cells contracts as a syncytium.
Hypertrophic cardiomyopathy is a condition in which muscle tissues of the heart become thickened without an obvious cause. The parts of the heart most commonly affected are the interventricular septum and the ventricles. This results in the heart being less able to pump blood effectively and also may cause electrical conduction problems. Specifically, within the bundle branches that conduct impulses through the interventricular septum and into the Purkinje fibers, as these are responsible for the depolarization of contractile cells of both ventricles.
MYH7 is a gene encoding a myosin heavy chain beta (MHC-β) isoform expressed primarily in the heart, but also in skeletal muscles. This isoform is distinct from the fast isoform of cardiac myosin heavy chain, MYH6, referred to as MHC-α. MHC-β is the major protein comprising the thick filament that forms the sarcomeres in cardiac muscle and plays a major role in cardiac muscle contraction.
Telokin is an abundant protein found in smooth-muscle. It is identical to the C-terminus of myosin light-chain kinase. Telokin may play a role in the stabilization of unphosphorylated smooth-muscle myosin filaments. Because of its origin as the C-terminal end of smooth muscle myosin light chain kinase, it is called "telokin".
Myosin regulatory light polypeptide 9 is a protein that in humans is encoded by the MYL9 gene.
Protein kinase C epsilon type (PKCε) is an enzyme that in humans is encoded by the PRKCE gene. PKCε is an isoform of the large PKC family of protein kinases that play many roles in different tissues. In cardiac muscle cells, PKCε regulates muscle contraction through its actions at sarcomeric proteins, and PKCε modulates cardiac cell metabolism through its actions at mitochondria. PKCε is clinically significant in that it is a central player in cardioprotection against ischemic injury and in the development of cardiac hypertrophy.
Cardiac muscle troponin T (cTnT) is a protein that in humans is encoded by the TNNT2 gene. Cardiac TnT is the tropomyosin-binding subunit of the troponin complex, which is located on the thin filament of striated muscles and regulates muscle contraction in response to alterations in intracellular calcium ion concentration.
Tropomyosin alpha-1 chain is a protein that in humans is encoded by the TPM1 gene. This gene is a member of the tropomyosin (Tm) family of highly conserved, widely distributed actin-binding proteins involved in the contractile system of striated and smooth muscles and the cytoskeleton of non-muscle cells.
A myosin light chain is a light chain of myosin. Myosin light chains were discovered by Chinese biochemist Cao Tianqin when he was a graduate student at the University of Cambridge in England.
ACTC1 encodes cardiac muscle alpha actin. This isoform differs from the alpha actin that is expressed in skeletal muscle, ACTA1. Alpha cardiac actin is the major protein of the thin filament in cardiac sarcomeres, which are responsible for muscle contraction and generation of force to support the pump function of the heart.
The myosin-binding protein C, cardiac-type is a protein that in humans is encoded by the MYBPC3 gene. This isoform is expressed exclusively in heart muscle during human and mouse development, and is distinct from those expressed in slow skeletal muscle (MYBPC1) and fast skeletal muscle (MYBPC2).
5'-AMP-activated protein kinase subunit gamma-2 is an enzyme that in humans is encoded by the PRKAG2 gene.
Troponin C, also known as TN-C or TnC, is a protein that resides in the troponin complex on actin thin filaments of striated muscle and is responsible for binding calcium to activate muscle contraction. Troponin C is encoded by the TNNC1 gene in humans for both cardiac and slow skeletal muscle.
Myosin-10 also known as myosin heavy chain 10 or non-muscle myosin IIB (NM-IIB) is a protein that in humans is encoded by the MYH10 gene. Non-muscle myosins are expressed in a wide variety of tissues, but NM-IIB is the only non-muscle myosin II isoform expressed in cardiac muscle, where it localizes to adherens junctions within intercalated discs. NM-IIB is essential for normal development of cardiac muscle and for integrity of intercalated discs. Mutations in MYH10 have been identified in patients with left atrial enlargement.
Myosin heavy chain, α isoform (MHC-α) is a protein that in humans is encoded by the MYH6 gene. This isoform is distinct from the ventricular/slow myosin heavy chain isoform, MYH7, referred to as MHC-β. MHC-α isoform is expressed predominantly in human cardiac atria, exhibiting only minor expression in human cardiac ventricles. It is the major protein comprising the cardiac muscle thick filament, and functions in cardiac muscle contraction. Mutations in MYH6 have been associated with late-onset hypertrophic cardiomyopathy, atrial septal defects and sick sinus syndrome.
Myosin essential light chain (ELC), ventricular/cardiac isoform is a protein that in humans is encoded by the MYL3 gene. This cardiac ventricular/slow skeletal ELC isoform is distinct from that expressed in fast skeletal muscle (MYL1) and cardiac atrial muscle (MYL4). Ventricular ELC is part of the myosin molecule and is important in modulating cardiac muscle contraction.
Atrial Light Chain-1 (ALC-1), also known as Essential Light Chain, Atrial is a protein that in humans is encoded by the MYL4 gene. ALC-1 is expressed in fetal cardiac ventricular and fetal skeletal muscle, as well as fetal and adult cardiac atrial tissue. ALC-1 expression is reactivated in human ventricular myocardium in various cardiac muscle diseases, including hypertrophic cardiomyopathy, dilated cardiomyopathy, ischemic cardiomyopathy and congenital heart diseases.
E3 ubiquitin-protein ligase TRIM63, also known as "MuRF1", is an enzyme that in humans is encoded by the TRIM63 gene.
Atrial Light Chain-2 (ALC-2) also known as Myosin regulatory light chain 2, atrial isoform (MLC2a) is a protein that in humans is encoded by the MYL7 gene. ALC-2 expression is restricted to cardiac muscle atria in healthy individuals, where it functions to modulate cardiac development and contractility. In human diseases, including hypertrophic cardiomyopathy, dilated cardiomyopathy, ischemic cardiomyopathy and others, ALC-2 expression is altered.
Myosin light chain kinase 2 also known as MYLK2 is an enzyme which in humans is encoded by the MYLK2 gene.