Connexin43 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
Symbol | Connexin43 | ||||||||
Pfam | PF03508 | ||||||||
InterPro | IPR013124 | ||||||||
TCDB | 1.A.24 | ||||||||
|
Gap junction alpha-1 protein (GJA1), also known as connexin 43 (Cx43), is a protein that in humans is encoded by the GJA1 gene on chromosome 6. [5] [6] [7] As a connexin, GJA1 is a component of gap junctions, which allow for gap junction intercellular communication (GJIC) between cells to regulate cell death, proliferation, and differentiation. [8] As a result of its function, GJA1 is implicated in many biological processes, including muscle contraction, embryonic development, inflammation, and spermatogenesis, as well as diseases, including oculodentodigital dysplasia (ODDD), heart malformations, and cancers. [7] [9] [10]
GJA1 is a 43.0 kDa protein composed of 382 amino acids. [11] GJA1 contains a long C-terminal tail, an N-terminal domain, and multiple transmembrane domains. The protein passes through the phospholipid bilayer four times, leaving its C- and N-terminals exposed to the cytoplasm. [12] The C-terminal tail is composed of 50 amino acids and includes post-translational modification sites, as well as binding sites for transcription factors, cytoskeleton elements, and other proteins. [12] [13] As a result, the C-terminal tail is central to functions such as regulating pH gating and channel assembly. Notably, the DNA region of the GJA1 gene encoding this tail is highly conserved, indicating that it is either resistant to mutations or becomes lethal when mutated. Meanwhile, the N-terminal domain is involved in channel gating and oligomerization and, thus, may control the switch between the channel's open and closed states. The transmembrane domains form the gap junction channel while the extracellular loops facilitate proper channel docking. Moreover, two extracellular loops form disulfide bonds that interact with two hexamers to form a complete gap junction channel. [12]
The connexin-43 internal ribosome entry site is an RNA element present in the 5' UTR of the mRNA of GJA1. This internal ribosome entry site (IRES) allows cap independent translation during conditions such as heat shock and stress. [14]
Connexin-43 internal ribosome entry site (IRES) | |
---|---|
Identifiers | |
Symbol | IRES_Cx43 |
Rfam | RF00487 |
Other data | |
RNA type | Cis-reg; IRES |
Domain(s) | Eukaryota |
GO | GO:0043022 |
SO | SO:0000243 |
PDB structures | PDBe |
As a member of the connexin family, GJA1 is a component of gap junctions, which are intercellular channels that connect adjacent cells to permit the exchange of low molecular weight molecules, such as small ions and secondary messengers, to maintain homeostasis. [7] [12] [15]
GJA1 is the most ubiquitously expressed connexin and is detected in most cell types. [7] [9] [12] It is the major protein in heart gap junctions and is purported to play a crucial role in the synchronized contraction of the heart. [7] Despite its key role in the heart and other vital organs, GJA1 has a short half-life (only two to four hours), indicating that the protein undergoes daily turnover in the heart and may be highly abundant or compensated with other connexins. [12] GJA1 is also largely involved in embryonic development. [7] [8] For instance, transforming growth factor-beta 1 (TGF-β1) was observed to induce GJA1 expression via the Smad and ERK1/2 signaling pathways, resulting in trophoblast cell differentiation into the placenta. [8]
Furthermore, GJA1 is expressed in many immune cells, such as eosinophils and T cells, where its gap junction function promotes the maturation and activation of these cells and, by extension, the cross-communication necessary to mount an inflammatory response. [10] It has also been shown that uterine macrophage directly physically couple with uterine myocytes through GJA1, transferring Ca²⁺, to promote uterine muscle contraction and excitation during human labor onset. [16]
In addition, GJA1 can be found in the Leydig cells and seminiferous tubules between Sertoli cells and spermatogonia or primary spermatocytes, where it plays a key role in spermatogenesis and testis development through controlling the tight junction proteins in the blood-testis barrier.
While it is a channel protein, GJA1 can also perform channel-independent functions. In the cytoplasm, the protein regulates the microtubule network and, by extension, cell migration and polarity. [9] [13] This function has been observed in brain and heart development, as well as wound-healing in endothelial cells. [13] GJA1 has also been observed to localize to the mitochondria, where it promotes cell survival by downregulating the intrinsic apoptotic pathway during conditions of oxidative stress. [15]
Mutations in this gene have been associated with ODDD; craniometaphyseal dysplasia; sudden infant death syndrome, which is linked to cardiac arrhythmia; Hallermann–Streiff syndrome; and heart malformations, such as viscero-atrial heterotaxia. [7] [9] [12] [17] There have also been a few cases of reported hearing loss and skin disorders unrelated to ODDD. [12] Ultimately, GJA1 has low tolerance for deviations from its original sequence, with mutations resulting in loss- or gain-of-channel function that lead to disease phenotypes. [12] It is paradoxical, however, that patients with an array of somatic mutations in GJA1 most often do not present with cardiac arrhythmias, even though connexin-43 is the most abundant protein forming gap junctional pores in cardiomyocytes and are essential for normal action potential propagation. [18]
Notably, GJA1 expression has been associated with a wide variety of cancers, including nasopharyngeal carcinoma, meningioma, hemangiopericytoma, liver tumor, colon cancer, esophageal cancer, breast cancer, mesothelioma, glioblastoma, lung cancer, adrenocortical tumors, renal cell cancer, cervical carcinoma, ovarian carcinoma, endometrial carcinoma, prostate cancer, thyroid carcinoma, and testicular cancer. [9] Its role in controlling cell motility and polarity was thought to contribute to cancer development and metastasis, though its role as a gap junction protein may also be involved. [9] [15] Moreover, the cytoprotective effects of this protein can promote tumor cell survival in radiotherapy treatments, while silencing its gene increases radiosensitivity. As a result, GJA1 may serve as a target for improving the success of radiotherapeutic treatment of cancer. [15] As a biomarker, GJA1 could also be used to screen young males for risk of testis cancer. [9]
The thyroid hormone triiodothyronine (T3) downregulates the expression of GJA1. This is assumed to be a key mechanism why the conduction velocity in myocardial tissue is reduced in thyrotoxicosis, thereby promoting cardiac arrhythmia. [19]
Currently, only rotigaptide, an antiarrhythmic peptide-based drug, and its derivatives, such as danegaptide, have reached clinical trials for treating cardiac pathologies by enhancing GJA1 expression. Alternatively, drugs could target complementary connexins, such as Cx40, which function similarly to GJA1. However, both approaches still require a system to target the diseased tissue to avoid inducing developmental abnormalities elsewhere. [12] Thus, a more effective approach entails designing a miRNA through antisense oligonucleotides, transfection, or infection to knock down only mutant GJA1 mRNA, thus allowing the expression of wildtype GJA1 and retaining normal phenotype. [9] [12]
Gap junction protein, alpha 1 has been shown to interact with:
First photographed around 1952 it wasn't until 1969 that gap junctions were referred to as "gap junctions". Named after the 2-4 nm gap they bridged between cell membranes, they had been characterised in more detail by 1967. Gap junctions are one of four broad categories of intercellular connections that form between a multitude of animal cell types.
In biology, a connexon, also known as a connexin hemichannel, is an assembly of six proteins called connexins that form the pore for a gap junction between the cytoplasm of two adjacent cells. This channel allows for bidirectional flow of ions and signaling molecules. The connexon is the hemichannel supplied by a cell on one side of the junction; two connexons from opposing cells normally come together to form the complete intercellular gap junction channel. In some cells, the hemichannel itself is active as a conduit between the cytoplasm and the extracellular space, allowing the transference of ions and small molecules lower than 1-2 KDa. Little is known about this function of connexons besides the new evidence suggesting their key role in intracellular signaling. In still other cells connexons have been shown to occur in mitochondrial membranes and appear to play a role in heart ischaemia.
Connexins (Cx), or gap junction proteins, are structurally related transmembrane proteins that assemble to form vertebrate gap junctions. An entirely different family of proteins, the innexins, form gap junctions in invertebrates. Each gap junction is composed of two hemichannels, or connexons, which consist of homo- or heterohexameric arrays of connexins, and the connexon in one plasma membrane docks end-to-end with a connexon in the membrane of a closely opposed cell. The hemichannel is made of six connexin subunits, each of which consist of four transmembrane segments. Gap junctions are essential for many physiological processes, such as the coordinated depolarization of cardiac muscle, proper embryonic development, and the conducted response in microvasculature. Connexins also have non-channel dependant functions relating to cytoskeleton and cell migration. For these reasons, mutations in connexin-encoding genes can lead to functional and developmental abnormalities.
Gap junction beta-2 protein (GJB2), also known as connexin 26 (Cx26) — is a protein that in humans is encoded by the GJB2 gene.
Gap junction beta-1 protein (GJB1), also known as connexin 32 (Cx32) is a transmembrane protein that in humans is encoded by the GJB1 gene. Gap junction beta-1 protein is a member of the gap junction connexin family of proteins that regulates and controls the transfer of communication signals across cell membranes, primarily in the liver and peripheral nervous system.
Gap junction alpha-5 protein (GJA5), also known as connexin 40 (Cx40) — is a protein that in humans is encoded by the GJA5 gene.
Gap junction beta-6 protein (GJB6), also known as connexin 30 (Cx30) — is a protein that in humans is encoded by the GJB6 gene. Connexin 30 (Cx30) is one of several gap junction proteins expressed in the inner ear. Mutations in gap junction genes have been found to lead to both syndromic and nonsyndromic deafness. Mutations in this gene are associated with Clouston syndrome.
Gap junction beta-3 protein (GJB3), also known as connexin 31 (Cx31) — is a protein that in humans is encoded by the GJB3 gene.
Gap junction alpha-4 protein, also known as Connexin-37 or Cx37, is a protein that in humans is encoded by the GJA4 gene. This protein, like other Connexin proteins, forms connections between cells known as gap junctions. Connexin 37 can be found in many tissues including the ovary, heart, and kidney.
Gap junction alpha-3 protein is a protein that in humans is encoded by the GJA3 gene.
Plakophilin-2 is a protein that in humans is encoded by the PKP2 gene. Plakophilin 2 is expressed in skin and cardiac muscle, where it functions to link cadherins to intermediate filaments in the cytoskeleton. In cardiac muscle, plakophilin-2 is found in desmosome structures located within intercalated discs. Mutations in PKP2 have been shown to be causal in arrhythmogenic right ventricular cardiomyopathy.
Gap junction gamma-1 protein (GJC1), also known as gap junction alpha-7 protein (GJA7) and connexin 45 (Cx45) — is a protein that in humans is encoded by the GJC1 gene.
Gap junction alpha-8 protein is a protein that in humans is encoded by the GJA8 gene. It is also known as connexin 50.
Gap junction delta-2 (GJD2), also known as connexin-36 (Cx36) or gap junction alpha-9 (GJA9), is a protein that in humans is encoded by the GJD2 gene.
Gap junction delta-2 protein (GJD2) also known as connexin-36 (Cx36) or gap junction alpha-9 protein (GJA9) is a protein that in humans is encoded by the GJD2 gene.
Gap junction gamma-3, also known as connexin-29 (Cx29) or gap junction epsilon-1 (GJE1), is a protein that in humans is encoded by the GJC3 gene.
Gap junction gamma-2 (GJC2), also known as connexin-46.6 (Cx46.6) and connexin-47 (Cx47) and gap junction alpha-12 (GJA12), is a protein that in humans is encoded by the GJC2 gene.
Gap junction beta-5 protein (GJB5), also known as connexin-31.1 (Cx31.1), is a protein that in humans is encoded by the GJB5 gene.
Gap junction alpha-10 protein, also known as connexin-62 (Cx62), is a protein that in humans is encoded by the GJA10 gene.
Gap junction modulation describes the functional manipulation of gap junctions, specialized channels that allow direct electrical and chemical communication between cells without exporting material from the cytoplasm. Gap junctions play an important regulatory role in various physiological processes including signal propagation in cardiac muscles and tissue homeostasis of the liver. Modulation is required, since gap junctions must respond to their environment, whether through an increased expression or permeability. Impaired or altered modulation can have significant health implications and are associated with the pathogenesis of the liver, heart and intestines.