KCNE4

Last updated
KCNE4
Identifiers
Aliases KCNE4 , MIRP3, potassium voltage-gated channel subfamily E regulatory subunit 4
External IDs OMIM: 607775 MGI: 1891125 HomoloGene: 10959 GeneCards: KCNE4
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_080671

NM_021342

RefSeq (protein)

NP_542402

NP_067317

Location (UCSC) Chr 2: 223.05 – 223.2 Mb Chr 1: 78.79 – 78.8 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Potassium voltage-gated channel subfamily E member 4, originally named MinK-related peptide 3 or MiRP3 when it was discovered, is a protein that in humans is encoded by the KCNE4 gene. [5] [6]

Contents

Function

Voltage-gated potassium channels (Kv) represent the most complex class of voltage-gated ion channels from both functional and structural standpoints. Their diverse functions include regulating neurotransmitter release, heart rate, insulin secretion, neuronal excitability, epithelial electrolyte transport, smooth muscle contraction, and cell volume. The KCNE4 gene encodes KCNE4 (originally named MinK-related peptide 3 or MiRP3), a member of the KCNE family of voltage-gated potassium (Kv) channel ancillary or β subunits. [7]

KCNE4 is best known for modulating the KCNQ1 Kv α subunit, but it also regulates KCNQ4, Kv1.x, Kv2.1, Kv4.x and BK α subunits in heterologous co-expression experiments and/or in vivo. KCNE4 often, but not always, acts as an inhibitory subunit to suppress potassium channel function, but this varies depending on the channel subtype.

KCNE4 strongly inhibits the KCNQ1 potassium channel, which is known to play important roles in human cardiac myocyte repolarization, and in multiple epithelial cell types. [8] KCNE4 inhibition of KCNQ1 requires calmodulin, which binds to both KCNQ1 and KCNE4. [9] KCNE4 can also inhibit complexes formed by KCNQ1 and KCNE1. [10] KCNE4 has no known effect on KCNQ2, KCNQ3 or KCNQ5 channels, but augments activity of KCNQ4 in HEK cells, mesenteric artery [11] and Xenopus laevis oocytes. [12]

KCNE4 strongly inhibits Kv1.1 and Kv1.3 channels when co-expressed in HEK cells and in Xenopus laevis oocytes, while leaving Kv1.2 and Kv1.4 currents unaffected. [13] KCNE4 augments Kv1.5 current and surface expression twofold in CHO cells (but had no effect in Xenopus oocytes). Kcne4 deletion from mice impaired currents attributable to Kv1.5, in ventricular myocytes. [14]

KCNE4 inhibited Kv2.1 currents by 90% but had little to no effect on currents generated by heteromers of Kv2.1 with the regulatory α subunit Kv6.4. [15]

KCNE4 slows activation and inactivation of Kv4.2 channels, and induces overshoot upon recovery from inactivation. Co-expression with KChIP2 produces intermediate gating kinetics in complexes with Kv4.2 and KCNE4. [16] Deletion of Kcne4 in mice impaired ventricular myocyte Ito, a current generated at least in part by Kv4.2. [14]

Although mouse KCNE4 reportedly had no effect on Kv4.3 when coexpressed in oocytes, [13] human KCNE4 was found to accelerate inactivation and recovery from inactivation of Kv4.3-KChIP2 complexes. [17]

KCNE4 has also been found to regulate the large-conductance Ca2+-activated potassium channel, BK. KCNE4 inhibits BK activity by positive-shifting the voltage dependence of BK activation and accelerating BK protein degradation. [18]

Structure

KCNE4 is a type 1 membrane protein, with the transmembrane segment predicted to be alpha-helical. No studies have as yet reported the number of KCNE4 subunits within a functional channel complex; it is likely to be either 2 or 4. The majority of studies of KCNE4 function, structure-function relationships and effects of pathological gene sequence variants within KCNE4 have utilized the widely reported 170 residue version of the protein encoded by exon 2 of the human KCNE4 gene. However, in 2016 a longer form of the KCNE4 protein, termed KCNE4L, was discovered. An additional N-terminal portion of 51 residues, encoded by exon 1 of the human KCNE4 gene, were found to also be expressed in multiple human tissues, extending the human protein to 221 residues, by far the longest of the KCNE subunits. Human KCNE4L exhibits some functional differences to the shorter 170 residue form now also termed KCNE4S. KCNE4L is predicted to also be expressed in other mammals, reptiles, amphibians and fish, although the house mouse (Mus musculus) appears to only express KCNE4S because the KCNE4L start site is lacking in the house mouse genome. [19]

Tissue distribution

Human KCNE4L transcripts are most highly expressed in uterus, and next most highly expressed in atria, adrenal gland, lymph nodes, pituitary gland, spleen and ureter. KCNE4L transcript is also detectable in cervix, colon, optic nerve, ovary, oviduct, pancreas, skin, retina, spinal cord, stomach, thymus, and vagina. [19]

In the rat heart, KCNE4 protein co-localizes with Kv4.2, a channel that KCNE4 also functionally regulates. [20] In mouse heart, KCNE4 is preferentially expressed in ventricles versus atria, and in young adult males much more than young adult females. This is because cardiac KCNE4 expression is positively regulated by dihydrotestosterone. [14] In rat mesenteric artery, KCNE4 augments KCNQ4 channel activity to regulate arterial tone. [21]

Clinical significance

A single polymorphism in the KCNE4 intracellular N-terminal domain, E145D, has been reported to affect predisposition to the relatively common chronic cardiac arrhythmia, atrial fibrillation, in Chinese populations, [22] and to impair the ability of KCNE4 to inhibit KCNQ1. [23] If KCNE4 inhibits KCNQ1 in the atrium, it is conceivable that removing this inhibition could shorten the atrial effective refractory period, which could predispose to atrial fibrillation, but this mechanism has not yet been substantiated with in vivo data.

See also

Notes

Related Research Articles

<span class="mw-page-title-main">Repolarization</span> Change in membrane potential

In neuroscience, repolarization refers to the change in membrane potential that returns it to a negative value just after the depolarization phase of an action potential which has changed the membrane potential to a positive value. The repolarization phase usually returns the membrane potential back to the resting membrane potential. The efflux of potassium (K+) ions results in the falling phase of an action potential. The ions pass through the selectivity filter of the K+ channel pore.

<span class="mw-page-title-main">KvLQT1</span> Protein-coding gene in the species Homo sapiens

Kv7.1 (KvLQT1) is a potassium channel protein whose primary subunit in humans is encoded by the KCNQ1 gene. It's mutation causes Long QT syndrome, Kv7.1 is a voltage and lipid-gated potassium channel present in the cell membranes of cardiac tissue and in inner ear neurons among other tissues. In the cardiac cells, Kv7.1 mediates the IKs (or slow delayed rectifying K+) current that contributes to the repolarization of the cell, terminating the cardiac action potential and thereby the heart's contraction. It is a member of the KCNQ family of potassium channels.

<span class="mw-page-title-main">Kv1.1</span>

Potassium voltage-gated channel subfamily A member 1 also known as Kv1.1 is a shaker related voltage-gated potassium channel that in humans is encoded by the KCNA1 gene. Isaacs syndrome is a result of an autoimmune reaction against the Kv1.1 ion channel.

<span class="mw-page-title-main">Voltage-gated potassium channel</span> Class of transport proteins

Voltage-gated potassium channels (VGKCs) are transmembrane channels specific for potassium and sensitive to voltage changes in the cell's membrane potential. During action potentials, they play a crucial role in returning the depolarized cell to a resting state.

<span class="mw-page-title-main">KCNE1</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily E member 1 is a protein that in humans is encoded by the KCNE1 gene.

<span class="mw-page-title-main">KCNE2</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily E member 2 (KCNE2), also known as MinK-related peptide 1 (MiRP1), is a protein that in humans is encoded by the KCNE2 gene on chromosome 21. MiRP1 is a voltage-gated potassium channel accessory subunit associated with Long QT syndrome. It is ubiquitously expressed in many tissues and cell types. Because of this and its ability to regulate multiple different ion channels, KCNE2 exerts considerable influence on a number of cell types and tissues. Human KCNE2 is a member of the five-strong family of human KCNE genes. KCNE proteins contain a single membrane-spanning region, extracellular N-terminal and intracellular C-terminal. KCNE proteins have been widely studied for their roles in the heart and in genetic predisposition to inherited cardiac arrhythmias. The KCNE2 gene also contains one of 27 SNPs associated with increased risk of coronary artery disease. More recently, roles for KCNE proteins in a variety of non-cardiac tissues have also been explored.

<span class="mw-page-title-main">Cation channel superfamily</span> Family of ion channel proteins

The transmembrane cation channel superfamily was defined in InterPro and Pfam as the family of tetrameric ion channels. These include the sodium, potassium, calcium, ryanodine receptor, HCN, CNG, CatSper, and TRP channels. This large group of ion channels apparently includes families 1.A.1, 1.A.2, 1.A.3, and 1.A.4 of the TCDB transporter classification.

<span class="mw-page-title-main">KCNA5</span> Protein-coding gene in humans

Potassium voltage-gated channel, shaker-related subfamily, member 5, also known as KCNA5 or Kv1.5, is a protein that in humans is encoded by the KCNA5 gene.

<span class="mw-page-title-main">KCND2</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily D member 2 is a protein that in humans is encoded by the KCND2 gene. It contributes to the cardiac transient outward potassium current (Ito1), the main contributing current to the repolarizing phase 1 of the cardiac action potential.

<span class="mw-page-title-main">KCNA2</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily A member 2 also known as Kv1.2 is a protein that in humans is encoded by the KCNA2 gene.

<span class="mw-page-title-main">KCNA4</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily A member 4 also known as Kv1.4 is a protein that in humans is encoded by the KCNA4 gene. It contributes to the cardiac transient outward potassium current (Ito1), the main contributing current to the repolarizing phase 1 of the cardiac action potential.

<span class="mw-page-title-main">KCNIP2</span> Protein-coding gene in the species Homo sapiens

Kv channel-interacting protein 2 also known as KChIP2 is a protein that in humans is encoded by the KCNIP2 gene.

<span class="mw-page-title-main">KCNB1</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel, Shab-related subfamily, member 1, also known as KCNB1 or Kv2.1, is a protein that, in humans, is encoded by the KCNB1 gene.

<span class="mw-page-title-main">KCNE3</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel, Isk-related family, member 3 (KCNE3), also known as MinK-related peptide 2(MiRP2) is a protein that in humans is encoded by the KCNE3 gene.

<span class="mw-page-title-main">KCND3</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily D member 3 also known as Kv4.3 is a protein that in humans is encoded by the KCND3 gene. It contributes to the cardiac transient outward potassium current (Ito1), the main contributing current to the repolarizing phase 1 of the cardiac action potential.

<span class="mw-page-title-main">KCNQ4</span> Mammalian protein found in Homo sapiens

Potassium voltage-gated channel subfamily KQT member 4, also known as voltage-gated potassium channel subunit Kv7.4, is a protein that in humans is encoded by the KCNQ4 gene.

<span class="mw-page-title-main">KCNS3</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily S member 3 (Kv9.3) is a protein that in humans is encoded by the KCNS3 gene. KCNS3 gene belongs to the S subfamily of the potassium channel family. It is highly expressed in pulmonary artery myocytes, placenta, and parvalbumin-containing GABA neurons in brain cortex. In humans, single-nucleotide polymorphisms of the KCNS3 gene are associated with airway hyperresponsiveness, whereas decreased KCNS3 mRNA expression is found in the prefrontal cortex of patients with schizophrenia.

<span class="mw-page-title-main">KCNE5</span> Protein-coding gene in the species Homo sapiens

KCNE1-like also known as KCNE1L is a protein that in humans is encoded by the KCNE1L gene.

<span class="mw-page-title-main">Cardiac transient outward potassium current</span> Ion current

The cardiac transient outward potassium current (referred to as Ito1 or Ito ) is one of the ion currents across the cell membrane of heart muscle cells. It is the main contributing current during the repolarizing phase 1 of the cardiac action potential. It is a result of the movement of positively charged potassium (K+) ions from the intracellular to the extracellular space. Ito1 is complemented with Ito2 resulting from Cl ions to form the transient outward current Ito.

<span class="mw-page-title-main">Heteroscodratoxin-1</span>

Heteroscodratoxin-1 is a neurotoxin produced by the venom glands of Heteroscodra maculata that shifts the activation threshold of voltage-gated potassium channels and the inactivation of Nav1.1 sodium channels to more positive potentials.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000152049 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000047330 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Abbott GW, Sesti F, Splawski I, Buck ME, Lehmann MH, Timothy KW, Keating MT, Goldstein SA (April 1999). "MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia". Cell. 97 (2): 175–87. doi: 10.1016/S0092-8674(00)80728-X . PMID   10219239. S2CID   8507168.
  6. "Entrez Gene: KCNE4 potassium voltage-gated channel, Isk-related family, member 4".
  7. Abbott GW, Sesti F, Splawski I, Buck ME, Lehmann MH, Timothy KW, Keating MT, Goldstein SA (April 1999). "MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia". Cell. 97 (2): 175–87. doi: 10.1016/S0092-8674(00)80728-X . PMID   10219239. S2CID   8507168.
  8. Grunnet M, Jespersen T, Rasmussen HB, Ljungstrøm T, Jorgensen NK, Olesen SP, Klaerke DA (July 2002). "KCNE4 is an inhibitory subunit to the KCNQ1 channel". The Journal of Physiology. 542 (Pt 1): 119–30. doi:10.1113/jphysiol.2002.017301. PMC   2290389 . PMID   12096056.
  9. Ciampa EJ, Welch RC, Vanoye CG, George AL (February 2011). "KCNE4 juxtamembrane region is required for interaction with calmodulin and for functional suppression of KCNQ1". The Journal of Biological Chemistry. 286 (6): 4141–9. doi: 10.1074/jbc.M110.158865 . PMC   3039368 . PMID   21118809.
  10. Lundquist AL, Manderfield LJ, Vanoye CG, Rogers CS, Donahue BS, Chang PA, Drinkwater DC, Murray KT, George AL (February 2005). "Expression of multiple KCNE genes in human heart may enable variable modulation of I(Ks)". Journal of Molecular and Cellular Cardiology. 38 (2): 277–87. doi:10.1016/j.yjmcc.2004.11.012. PMID   15698834.
  11. Jepps TA, Carr G, Lundegaard PR, Olesen SP, Greenwood IA (December 2015). "Fundamental role for the KCNE4 ancillary subunit in Kv7.4 regulation of arterial tone". The Journal of Physiology. 593 (24): 5325–40. doi:10.1113/JP271286. PMC   4704525 . PMID   26503181.
  12. Strutz-Seebohm N, Seebohm G, Fedorenko O, Baltaev R, Engel J, Knirsch M, Lang F (15 August 2006). "Functional coassembly of KCNQ4 with KCNE-beta- subunits in Xenopus oocytes". Cellular Physiology and Biochemistry. 18 (1–3): 57–66. doi: 10.1159/000095158 . PMID   16914890.
  13. 1 2 Grunnet M, Rasmussen HB, Hay-Schmidt A, Rosenstierne M, Klaerke DA, Olesen SP, Jespersen T (September 2003). "KCNE4 is an inhibitory subunit to Kv1.1 and Kv1.3 potassium channels". Biophysical Journal. 85 (3): 1525–37. Bibcode:2003BpJ....85.1525G. doi:10.1016/S0006-3495(03)74585-8. PMC   1303329 . PMID   12944270.
  14. 1 2 3 Crump SM, Hu Z, Kant R, Levy DI, Goldstein SA, Abbott GW (January 2016). "Kcne4 deletion sex- and age-specifically impairs cardiac repolarization in mice". FASEB Journal. 30 (1): 360–9. doi: 10.1096/fj.15-278754 . PMC   4684512 . PMID   26399785.
  15. David JP, Stas JI, Schmitt N, Bocksteins E (5 August 2015). "Auxiliary KCNE subunits modulate both homotetrameric Kv2.1 and heterotetrameric Kv2.1/Kv6.4 channels". Scientific Reports. 5: 12813. Bibcode:2015NatSR...512813D. doi:10.1038/srep12813. PMC   4525287 . PMID   26242757.
  16. Levy DI, Cepaitis E, Wanderling S, Toth PT, Archer SL, Goldstein SA (July 2010). "The membrane protein MiRP3 regulates Kv4.2 channels in a KChIP-dependent manner". The Journal of Physiology. 588 (Pt 14): 2657–68. doi:10.1113/jphysiol.2010.191395. PMC   2916995 . PMID   20498229.
  17. Radicke S, Cotella D, Graf EM, Banse U, Jost N, Varró A, Tseng GN, Ravens U, Wettwer E (September 2006). "Functional modulation of the transient outward current Ito by KCNE beta-subunits and regional distribution in human non-failing and failing hearts". Cardiovascular Research. 71 (4): 695–703. doi: 10.1016/j.cardiores.2006.06.017 . PMID   16876774.
  18. Levy DI, Wanderling S, Biemesderfer D, Goldstein SA (August 2008). "MiRP3 acts as an accessory subunit with the BK potassium channel". American Journal of Physiology. Renal Physiology. 295 (2): F380–7. doi:10.1152/ajprenal.00598.2007. PMC   2519185 . PMID   18463315.
  19. 1 2 Abbott GW (May 2016). "Novel exon 1 protein-coding regions N-terminally extend human KCNE3 and KCNE4". FASEB Journal. 30 (8): 2959–69. doi: 10.1096/fj.201600467R . PMC   6137956 . PMID   27162025.
  20. Levy DI, Cepaitis E, Wanderling S, Toth PT, Archer SL, Goldstein SA (July 2010). "The membrane protein MiRP3 regulates Kv4.2 channels in a KChIP-dependent manner". The Journal of Physiology. 588 (Pt 14): 2657–68. doi:10.1113/jphysiol.2010.191395. PMC   2916995 . PMID   20498229.
  21. Jepps TA, Carr G, Lundegaard PR, Olesen SP, Greenwood IA (December 2015). "Fundamental role for the KCNE4 ancillary subunit in Kv7.4 regulation of arterial tone". The Journal of Physiology. 593 (24): 5325–40. doi:10.1113/JP271286. PMC   4704525 . PMID   26503181.
  22. Zeng ZY, Pu JL, Tan C, Teng SY, Chen JH, Su SY, Zhou XY, Zhang S, Li YS, Wang FZ, Gu DF (November 2005). "[The association of single nucleotide polymorphism of slow delayed rectifier K+ channel genes with atrial fibrillation in Han nationality Chinese]". Zhonghua Xin Xue Guan Bing Za Zhi. 33 (11): 987–91. PMID   16563243.
  23. Ma KJ, Li N, Teng SY, Zhang YH, Sun Q, Gu DF, Pu JL (January 2007). "Modulation of KCNQ1 current by atrial fibrillation-associated KCNE4 (145E/D) gene polymorphism". Chinese Medical Journal. 120 (2): 150–4. doi: 10.1097/00029330-200701020-00017 . PMID   17335661.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.