KCNJ15 | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | KCNJ15 , IRKK, KIR1.3, KIR4.2, potassium voltage-gated channel subfamily J member 15, potassium inwardly rectifying channel subfamily J member 15 | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | OMIM: 602106 MGI: 1310000 HomoloGene: 1690 GeneCards: KCNJ15 | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
Potassium inwardly-rectifying channel, subfamily J, member 15, also known as KCNJ15 is a human gene, which encodes the Kir4.2 protein. [5]
Potassium channels are present in most mammalian cells, where they participate in a wide range of physiologic responses. Kir4.2 is an integral membrane protein and inward-rectifier type potassium channel. Kir4.2 has a greater tendency to allow potassium to flow into a cell rather than out of a cell. Three transcript variants encoding the same protein have been found for this gene. [5]
The existing literature describing KCNJ15 and Kir4.2 is sparse. In spite of some initial channel nomenclature confusion, in which the gene was referred to as Kir1.3 [6] the channel was first cloned from human kidney by Shuck and coworkers in 1997. [7] Shortly thereafter it was shown that mutation of an extracellular lysine residue resulted in 6-fold increase in K+ current. [8] Two years later, in 1999, voltage clamp measurements in xenopus oocytes found that intracellular acidification decreased the potassium current of Kir4.2. Also activation of protein kinase C decreased the current although in a non-reversible fashion. Furthermore, it was found that coexpression with related potassium channel Kir5.1, changed these results somewhat, which the authors concluded was likely to be a result of heterodimerization. [6] Further voltage clamp investigations found the exact pH sensitivity (pKa = 7.1), open probability (high) and conductance of ~25 pS. [9] In 2007 the channel was found to interact with the Calcium-sensing receptor in human kidney, using a yeast-two-hybrid system. This co-localization was verified at the protein level using both immunofluorescence techniques and coimmunoprecipitation of Kir4.2 and the Calcium-sensing receptor. [10] Also a mutational study of Kir4.2 has demonstrated that removal of a c-terminal tyrosine increased the K+ current more than 10-fold. [11] Because the channel has a very high open probability, the authors of this last article conclude that this increase is mediated by increased trafficking of the protein to the membrane and not increased single-channel conductance. This same line of reasoning is applicable to the initial work of Derst and coworkers. [8]
KCNJ15 has been shown to interact with Interleukin 16. [12]
The renal outer medullary potassium channel (ROMK) is an ATP-dependent potassium channel (Kir1.1) that transports potassium out of cells. It plays an important role in potassium recycling in the thick ascending limb (TAL) and potassium secretion in the cortical collecting duct (CCD) of the nephron. In humans, ROMK is encoded by the KCNJ1 gene. Multiple transcript variants encoding different isoforms have been found for this gene.
Inward-rectifier potassium channels (Kir, IRK) are a specific lipid-gated subset of potassium channels. To date, seven subfamilies have been identified in various mammalian cell types, plants, and bacteria. They are activated by phosphatidylinositol 4,5-bisphosphate (PIP2). The malfunction of the channels has been implicated in several diseases. IRK channels possess a pore domain, homologous to that of voltage-gated ion channels, and flanking transmembrane segments (TMSs). They may exist in the membrane as homo- or heterooligomers and each monomer possesses between 2 and 4 TMSs. In terms of function, these proteins transport potassium (K+), with a greater tendency for K+ uptake than K+ export. The process of inward-rectification was discovered by Denis Noble in cardiac muscle cells in 1960s and by Richard Adrian and Alan Hodgkin in 1970 in skeletal muscle cells.
The Kir2.1 inward-rectifier potassium channel is a lipid-gated ion channel encoded by the KCNJ2 gene.
Kir6.2 is a major subunit of the ATP-sensitive K+ channel, a lipid-gated inward-rectifier potassium ion channel. The gene encoding the channel is called KCNJ11 and mutations in this gene are associated with congenital hyperinsulinism.
G protein-activated inward rectifier potassium channel 2 is a protein that in humans is encoded by the KCNJ6 gene. Mutation in KCNJ6 gene has been proposed to be the cause of Keppen-Lubinsky Syndrome (KPLBS).
Potassium inwardly-rectifying channel, subfamily J, member 4, also known as KCNJ4 or Kir2.3, is a human gene.
Potassium inwardly-rectifying channel, subfamily J, member 8, also known as KCNJ8, is a human gene encoding the Kir6.1 protein. A mutation in KCNJ8 has been associated with cardiac arrest in the early repolarization syndrome.
G protein-activated inward rectifier potassium channel 4(GIRK-4) is a protein that in humans is encoded by the KCNJ5 gene and is a type of G protein-gated ion channel.
ATP-sensitive inward rectifier potassium channel 12 is a lipid-gated ion channel that in humans is encoded by the KCNJ12 gene.
G protein-activated inward rectifier potassium channel 1(GIRK-1) is encoded in the human by the gene KCNJ3.
ATP-sensitive inward rectifier potassium channel 10 is a protein that in humans is encoded by the KCNJ10 gene.
Potassium channel subfamily K member 1 is a protein that in humans is encoded by the KCNK1 gene.
Lin-7 homolog A is a protein that in humans is encoded by the LIN7A gene.
Lin-7 homolog B is a protein that in humans is encoded by the LIN7B gene.
Potassium channel subfamily K member 6 is a protein that in humans is encoded by the KCNK6 gene.
Potassium inwardly-rectifying channel, subfamily J, member 16 (KCNJ16) is a human gene encoding the Kir5.1 protein.
Potassium inwardly-rectifying channel, subfamily J, member 14 (KCNJ14), also known as Kir2.4, is a human gene.
G protein-activated inward rectifier potassium channel 3 is a protein that in humans is encoded by the KCNJ9 gene.
Potassium inwardly-rectifying channel, subfamily J, member 13 (KCNJ13) is a human gene encoding the Kir7.1 protein.
The G protein-coupled inwardly rectifying potassium channels (GIRKs) are a family of lipid-gated inward-rectifier potassium ion channels which are activated (opened) by the signaling lipid PIP2 and a signal transduction cascade starting with ligand-stimulated G protein-coupled receptors (GPCRs). GPCRs in turn release activated G-protein βγ- subunits (Gβγ) from inactive heterotrimeric G protein complexes (Gαβγ). Finally, the Gβγ dimeric protein interacts with GIRK channels to open them so that they become permeable to potassium ions, resulting in hyperpolarization of the cell membrane. G protein-coupled inwardly rectifying potassium channels are a type of G protein-gated ion channels because of this direct interaction of G protein subunits with GIRK channels. The activation likely works by increasing the affinity of the channel for PIP2. In high concentration PIP2 activates the channel absent G-protein, but G-protein does not activate the channel absent PIP2.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.