KCNJ3

Last updated
KCNJ3
Protein KCNJ3 PDB 1n9p.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases KCNJ3 , GIRK1, KGA, KIR3.1, potassium voltage-gated channel subfamily J member 3, potassium inwardly rectifying channel subfamily J member 3
External IDs OMIM: 601534 MGI: 104742 HomoloGene: 1687 GeneCards: KCNJ3
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_002239
NM_001260508
NM_001260509
NM_001260510

NM_008426
NM_001304810
NM_001355118

RefSeq (protein)

NP_001247437
NP_001247438
NP_001247439
NP_002230

NP_001291739
NP_032452
NP_001342047

Location (UCSC) Chr 2: 154.7 – 154.86 Mb Chr 2: 55.44 – 55.6 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

G protein-activated inward rectifier potassium channel 1(GIRK-1) is encoded in the human by the gene KCNJ3. [5]

Contents

Potassium channels are present in most mammalian cells, where they participate in a wide range of physiologic responses. The protein encoded by this gene is an integral membrane protein and inward-rectifier type potassium channel. The encoded protein, which has a greater tendency to allow potassium to flow into a cell rather than out of a cell, is controlled by G-proteins and plays an important role in regulating heartbeat. It associates with three other G-protein-activated potassium channels to form a hetero-tetrameric pore-forming complex. [5]

Interactions

KCNJ3 has been shown to interact with KCNJ5. [6] [7]

See also

Related Research Articles

<span class="mw-page-title-main">G protein-gated ion channel</span>

G protein-gated ion channels are a family of transmembrane ion channels in neurons and atrial myocytes that are directly gated by G proteins.

<span class="mw-page-title-main">Inward-rectifier potassium channel</span> Group of transmembrane proteins that passively transport potassium ions

Inward-rectifier potassium channels (Kir, IRK) are a specific lipid-gated subset of potassium channels. To date, seven subfamilies have been identified in various mammalian cell types, plants, and bacteria. They are activated by phosphatidylinositol 4,5-bisphosphate (PIP2). The malfunction of the channels has been implicated in several diseases. IRK channels possess a pore domain, homologous to that of voltage-gated ion channels, and flanking transmembrane segments (TMSs). They may exist in the membrane as homo- or heterooligomers and each monomer possesses between 2 and 4 TMSs. In terms of function, these proteins transport potassium (K+), with a greater tendency for K+ uptake than K+ export. The process of inward-rectification was discovered by Denis Noble in cardiac muscle cells in 1960s and by Richard Adrian and Alan Hodgkin in 1970 in skeletal muscle cells.

K<sub>ir</sub>2.1 Protein-coding gene in the species Homo sapiens

The Kir2.1 inward-rectifier potassium channel is a lipid-gated ion channel encoded by the KCNJ2 gene.

K<sub>ir</sub>6.2 Protein-coding gene in the species Homo sapiens

Kir6.2 is a major subunit of the ATP-sensitive K+ channel, a lipid-gated inward-rectifier potassium ion channel. The gene encoding the channel is called KCNJ11 and mutations in this gene are associated with congenital hyperinsulinism.

<span class="mw-page-title-main">KCNJ6</span> Protein-coding gene in the species Homo sapiens

G protein-activated inward rectifier potassium channel 2 is a protein that in humans is encoded by the KCNJ6 gene. Mutation in KCNJ6 gene has been proposed to be the cause of Keppen-Lubinsky Syndrome (KPLBS).

<span class="mw-page-title-main">KCNJ4</span> Protein-coding gene in the species Homo sapiens

Potassium inwardly-rectifying channel, subfamily J, member 4, also known as KCNJ4 or Kir2.3, is a human gene.

<span class="mw-page-title-main">KCNJ8</span> Protein-coding gene in humans

Potassium inwardly-rectifying channel, subfamily J, member 8, also known as KCNJ8, is a human gene encoding the Kir6.1 protein. A mutation in KCNJ8 has been associated with cardiac arrest in the early repolarization syndrome.

<span class="mw-page-title-main">KCNJ5</span> Protein-coding gene in the species Homo sapiens

G protein-activated inward rectifier potassium channel 4(GIRK-4) is a protein that in humans is encoded by the KCNJ5 gene and is a type of G protein-gated ion channel.

<span class="mw-page-title-main">KCNJ12</span> Protein-coding gene in the species Homo sapiens

ATP-sensitive inward rectifier potassium channel 12 is a lipid-gated ion channel that in humans is encoded by the KCNJ12 gene.

<span class="mw-page-title-main">KCNJ10</span> Protein-coding gene in the species Homo sapiens

ATP-sensitive inward rectifier potassium channel 10 is a protein that in humans is encoded by the KCNJ10 gene.

<span class="mw-page-title-main">KCNAB1</span> Protein-coding gene in the species Homo sapiens

Voltage-gated potassium channel subunit beta-1 is a protein that in humans is encoded by the KCNAB1 gene.

<span class="mw-page-title-main">KCNJ15</span> Protein-coding gene in the species Homo sapiens

Potassium inwardly-rectifying channel, subfamily J, member 15, also known as KCNJ15 is a human gene, which encodes the Kir4.2 protein.

<span class="mw-page-title-main">LIN7B</span> Protein-coding gene in humans

Lin-7 homolog B is a protein that in humans is encoded by the LIN7B gene.

<span class="mw-page-title-main">KCNK6</span> Protein-coding gene in humans

Potassium channel subfamily K member 6 is a protein that in humans is encoded by the KCNK6 gene.

<span class="mw-page-title-main">KCNJ16</span> Protein-coding gene in the species Homo sapiens

Potassium inwardly-rectifying channel, subfamily J, member 16 (KCNJ16) is a human gene encoding the Kir5.1 protein.

<span class="mw-page-title-main">KCNJ14</span> Protein-coding gene in the species Homo sapiens

Potassium inwardly-rectifying channel, subfamily J, member 14 (KCNJ14), also known as Kir2.4, is a human gene.

<span class="mw-page-title-main">GNGT2</span> Protein-coding gene in the species Homo sapiens

Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-T2 is a protein that in humans is encoded by the GNGT2 gene.

<span class="mw-page-title-main">KCNJ9</span> Protein-coding gene in the species Homo sapiens

G protein-activated inward rectifier potassium channel 3 is a protein that in humans is encoded by the KCNJ9 gene.

The G protein-coupled inwardly rectifying potassium channels (GIRKs) are a family of lipid-gated inward-rectifier potassium ion channels which are activated (opened) by the signaling lipid PIP2 and a signal transduction cascade starting with ligand-stimulated G protein-coupled receptors (GPCRs). GPCRs in turn release activated G-protein βγ- subunits (Gβγ) from inactive heterotrimeric G protein complexes (Gαβγ). Finally, the Gβγ dimeric protein interacts with GIRK channels to open them so that they become permeable to potassium ions, resulting in hyperpolarization of the cell membrane. G protein-coupled inwardly rectifying potassium channels are a type of G protein-gated ion channels because of this direct interaction of G protein subunits with GIRK channels. The activation likely works by increasing the affinity of the channel for PIP2. In high concentration PIP2 activates the channel absent G-protein, but G-protein does not activate the channel absent PIP2.

AsKC11 is a toxin found in the venom of the sea anemone, Anemonia sulcata. This toxin is part of the Kunitz peptide family and has been shown to be an activator of G protein-coupled inwardly-rectifying potassium (GIRK) channels 1/2, involved in the regulation of cellular excitability. 

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000162989 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000026824 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "Entrez Gene: KCNJ3 potassium inwardly-rectifying channel, subfamily J, member 3".
  6. Huang, C L; Jan Y N; Jan L Y (Apr 1997). "Binding of the G protein betagamma subunit to multiple regions of G protein-gated inward-rectifying K+ channels". FEBS Lett. 405 (3): 291–8. doi:10.1016/S0014-5793(97)00197-X. ISSN   0014-5793. PMID   9108307. S2CID   44072628.
  7. He, Cheng; Yan Xixin; Zhang Hailin; Mirshahi Tooraj; Jin Taihao; Huang Aijun; Logothetis Diomedes E (Feb 2002). "Identification of critical residues controlling G protein-gated inwardly rectifying K(+) channel activity through interactions with the beta gamma subunits of G proteins". J. Biol. Chem. 277 (8): 6088–96. doi: 10.1074/jbc.M104851200 . ISSN   0021-9258. PMID   11741896.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.