CLCA2

Last updated
CLCA2
Identifiers
Aliases CLCA2 , CACC, CACC3, CLCRG2, CaCC-3, chloride channel accessory 2
External IDs OMIM: 604003 MGI: 2139758 HomoloGene: 4765 GeneCards: CLCA2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_006536

NM_178697

RefSeq (protein)

NP_006527

NP_848812

Location (UCSC) Chr 1: 86.42 – 86.46 Mb Chr 3: 144.78 – 144.81 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Chloride channel accessory 2 is a protein that in humans is encoded by the CLCA2 gene. [5]

Contents

The protein encoded by this gene belongs to the calcium sensitive chloride conductance protein family. To date, all members of this gene family map to the same site on chromosome 1p31-p22 and share high degrees of homology in size, sequence and predicted structure, but differ significantly in their tissue distributions. Since this protein is expressed predominantly in trachea and lung, it is suggested to play a role in the complex pathogenesis of cystic fibrosis. It may also serve as adhesion molecule for lung metastatic cancer cells, mediating vascular arrest and colonization, and furthermore, it has been implicated to act as a tumor suppressor gene for breast cancer. [5] Protein structure prediction methods suggest the N-terminal region of CLCA2 protein is a zinc metalloprotease. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Integrin beta 3</span> Mammalian protein found in Homo sapiens

Integrin beta-3 (β3) or CD61 is a protein that in humans is encoded by the ITGB3 gene. CD61 is a cluster of differentiation found on thrombocytes.

<span class="mw-page-title-main">PDCD6</span> Protein-coding gene in the species Homo sapiens

Programmed cell death protein 6 is a protein that in humans is encoded by the PDCD6 gene.

<span class="mw-page-title-main">RAC3</span> Mammalian protein found in Homo sapiens

Ras-related C3 botulinum toxin substrate 3 (Rac3) is a G protein that in humans is encoded by the RAC3 gene. It is an important component of intracellular signalling pathways. Rac3 is a member of the Rac subfamily of the Rho family of small G proteins. Members of this superfamily appear to regulate a diverse array of cellular events, including the control of cell growth, cytoskeletal reorganization, and the activation of protein kinases.

<span class="mw-page-title-main">GPRC6A</span> Protein-coding gene in the species Homo sapiens

G protein-coupled receptor family C group 6 member A (GPRC6A) is a protein that in humans is encoded by the GPRC6A gene. This protein functions as a receptor of L-α-amino acids, cations, osteocalcin, and steroids. It is a membrane androgen receptor.

<span class="mw-page-title-main">Alpha-actinin-4</span> Protein-coding gene in the species Homo sapiens

Alpha-actinin-4 is a protein that in humans is encoded by the ACTN4 gene.

<span class="mw-page-title-main">CIB1</span> Protein-coding gene in the species Homo sapiens

Calcium and integrin-binding protein 1 is a protein that in humans is encoded by the CIB1 gene and is located in Chromosome 15. The protein encoded by this gene is a member of the calcium-binding protein family. The specific function of this protein has not yet been determined; however this protein is known to interact with DNA-dependent protein kinase and may play a role in kinase-phosphatase regulation of DNA end-joining. This protein also interacts with integrin alpha(IIb)beta(3), which may implicate this protein as a regulatory molecule for alpha(IIb)beta(3).

<span class="mw-page-title-main">CLCA1</span> Protein-coding gene in the species Homo sapiens

Chloride channel accessory 1 is a protein that in humans is encoded by the CLCA1 gene.

<span class="mw-page-title-main">CLCN2</span> Protein-coding gene in the species Homo sapiens

Chloride channel protein 2 is a protein that in humans is encoded by the CLCN2 gene. Mutations of this gene have been found to cause leukoencephalopathy and Idiopathic generalised epilepsy, although the latter claim has been disputed. CLCN2 contains a transmembrane region that is involved in chloride ion transport as well two intracellular copies of the CBS domain.

<span class="mw-page-title-main">KCNJ3</span> Protein-coding gene in the species Homo sapiens

G protein-activated inward rectifier potassium channel 1(GIRK-1) is encoded in the human by the gene KCNJ3.

<span class="mw-page-title-main">CACNB4</span> Protein-coding gene in the species Homo sapiens

Voltage-dependent L-type calcium channel subunit beta-4 is a protein that in humans is encoded by the CACNB4 gene.

<span class="mw-page-title-main">RASA3</span> Protein-coding gene in the species Homo sapiens

Ras GTPase-activating protein 3 is an enzyme that in humans is encoded by the RASA3 gene.

<span class="mw-page-title-main">KCNIP1</span> Protein-coding gene in the species Homo sapiens

Kv channel-interacting protein 1 also known as KChIP1 is a protein that in humans is encoded by the KCNIP1 gene.

<span class="mw-page-title-main">AGTRAP</span> Protein-coding gene in the species Homo sapiens

Type-1 angiotensin II receptor-associated protein is a protein that in humans is encoded by the AGTRAP gene.

<span class="mw-page-title-main">KCNMB4</span> Protein-coding gene in humans

Calcium-activated potassium channel subunit beta-4 is a protein that in humans is encoded by the KCNMB4 gene.

<span class="mw-page-title-main">CPNE4</span> Protein-coding gene in the species Homo sapiens

Copine-4 is a protein that in humans is encoded by the CPNE4 gene.

<span class="mw-page-title-main">Ryanodine receptor 3</span> Transport protein and coding gene in humans

Ryanodine receptor 3 is one of a class of ryanodine receptors and a protein that in humans is encoded by the RYR3 gene. The protein encoded by this gene is both a calcium channel and a receptor for the plant alkaloid ryanodine. RYR3 and RYR1 control the resting calcium ion concentration in skeletal muscle.

<span class="mw-page-title-main">CLCA3</span> Pseudogene in the species Homo sapiens

Chloride channel accessory 3, also known as CLCA3, is a protein which in humans is encoded by the CLCA3P pseudogene. The protein encoded by this gene is a chloride channel. According to the HGNC, this protein is not expressed in humans but is in certain other species such as mouse. However, some conflicting reports state that human cells produce and glycosylate this protein.

<span class="mw-page-title-main">CLCA4</span> Protein-coding gene in the species Homo sapiens

Chloride channel accessory 4, also known as CLCA4, is a protein which in humans CLCA4 gene. The protein encoded by this gene is a chloride channel. Protein structure prediction methods suggest the N-terminal region of CLCA4 protein is a zinc metalloprotease, and the protein is not an ion channel per se.

<span class="mw-page-title-main">ANO1</span> Protein-coding gene in the species Homo sapiens

Anoctamin-1 (ANO1) also known as Transmembrane member 16A (TMEM16A) is a protein that, in humans, is encoded by the ANO1 gene. Anoctamin-1 is a voltage-gated calcium-activated anion channel, which acts as a chloride channel and a bicarbonate channel. additionally Anoctamin-1 is apical iodide channel. It is expressed in smooth muscle, epithelial cells, vomeronasal neurons, olfactory sustentacular cells, and is highly expressed in interstitial cells of Cajal (ICC) throughout the gastrointestinal tract.

<span class="mw-page-title-main">APBB1IP</span> Protein-coding gene in the species Homo sapiens

Amyloid beta A4 precursor protein-binding family B member 1-interacting protein (APBB1IP), also known as APBB1-interacting protein 1 or Rap1-GTP-interacting adapter molecule (RIAM) is a protein that in humans is encoded by the APBB1IP gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000137975 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000036960 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "Entrez Gene: CLCA2 chloride channel, calcium activated, family member 2".
  6. Pawłowski K, Lepistö M, Meinander N, et al. (2006). "Novel conserved hydrolase domain in the CLCA family of alleged calcium-activated chloride channels". Proteins. 63 (3): 424–39. doi:10.1002/prot.20887. PMID   16470849. S2CID   40041491.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.