TRPC1

Last updated
TRPC1
Identifiers
Aliases TRPC1 , HTRP-1, TRP1, transient receptor potential cation channel subfamily C member 1
External IDs OMIM: 602343; MGI: 109528; HomoloGene: 2478; GeneCards: TRPC1; OMA:TRPC1 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001251845
NM_003304

NM_011643
NM_001311123

RefSeq (protein)

NP_001238774
NP_003295

NP_001298052
NP_035773

Location (UCSC) Chr 3: 142.72 – 142.81 Mb Chr 9: 95.59 – 95.63 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Transient receptor potential canonical 1 (TRPC1) is a protein that in humans is encoded by the TRPC1 gene. [5] [6]

Contents

Function

TRPC1 is an ion channel located on the plasma membrane of numerous human and animal cell types. [7] It is a nonspecific cation channel, which means that both sodium and calcium ions can pass through it. TRPC1 is thought to mediate calcium entry in response to depletion of endoplasmic calcium stores or activation of receptors coupled to the phospholipase C system. In HEK293 cells the unitary current-voltage relationship of endogenous TRPC1 channels is almost linear, with a slope conductance of about 17 pS. The extrapolated reversal potential of TRPC1 channels is +30 mV. [8] The TRPC1 protein is widely expressed throughout the mammalian brain and has a similar corticolimbic expression pattern as TRPC4 and TRPC5. [9] [10] The highest density of TRPC1 protein is found in the lateral septum, an area with dense TRPC4 expression, and hippocampus and prefrontal cortex, areas with dense TRPC5 expression. [10]

History

TRPC1 was the first mammalian Transient Receptor Potential channel to be identified. In 1995 it was cloned when the research groups headed by Craig Montell and Lutz Birnbaumer were searching for proteins similar to the TRP channel in Drosophila . Together with TRPC3 they became the founding members of the TRPC ion channel family. [5] [6]

Interactions

TRPC1 has been shown to interact with:

See also

Related Research Articles

Transient receptor potential channels are a group of ion channels located mostly on the plasma membrane of numerous animal cell types. Most of these are grouped into two broad groups: Group 1 includes TRPC, TRPV, TRPVL, TRPM, TRPS, TRPN, and TRPA. Group 2 consists of TRPP and TRPML. Other less-well categorized TRP channels exist, including yeast channels and a number of Group 1 and Group 2 channels present in non-animals. Many of these channels mediate a variety of sensations such as pain, temperature, different kinds of taste, pressure, and vision. In the body, some TRP channels are thought to behave like microscopic thermometers and used in animals to sense hot or cold. Some TRP channels are activated by molecules found in spices like garlic (allicin), chili pepper (capsaicin), wasabi ; others are activated by menthol, camphor, peppermint, and cooling agents; yet others are activated by molecules found in cannabis or stevia. Some act as sensors of osmotic pressure, volume, stretch, and vibration. Most of the channels are activated or inhibited by signaling lipids and contribute to a family of lipid-gated ion channels.

A calcium channel is an ion channel which shows selective permeability to calcium ions. It is sometimes synonymous with voltage-gated calcium channel, which are a type of calcium channel regulated by changes in membrane potential. Some calcium channels are regulated by the binding of a ligand. Other calcium channels can also be regulated by both voltage and ligands to provide precise control over ion flow. Some cation channels allow calcium as well as other cations to pass through the membrane.

TRPC is a family of transient receptor potential cation channels in animals.

<span class="mw-page-title-main">TRPV</span> Subgroup of TRP cation channels named after the vanilloid receptor

TRPV is a family of transient receptor potential cation channels in animals. All TRPVs are highly calcium selective.

TRPM is a family of transient receptor potential ion channels (M standing for wikt:melastatin). Functional TRPM channels are believed to form tetramers. The TRPM family consists of eight different channels, TRPM1–TRPM8.

<span class="mw-page-title-main">MCOLN1</span> Protein-coding gene in the species Homo sapiens

Mucolipin-1 also known as TRPML1 is a protein that in humans is encoded by the MCOLN1 gene. It is a member of the small family of the TRPML channels, a subgroup of the large protein family of TRP ion channels.

TRPP is a family of transient receptor potential ion channels which when mutated can cause polycystic kidney disease.

<span class="mw-page-title-main">TRPC6</span> Protein and coding gene in humans

Transient receptor potential cation channel, subfamily C, member 6 or Transient receptor potential canonical 6, also known as TRPC6, is a human gene encoding a protein of the same name. TRPC6 is a transient receptor potential channel of the classical TRPC subfamily.

<span class="mw-page-title-main">TRPC2</span> Pseudogene in the species Homo sapiens

Transient receptor potential cation channel, subfamily C, member 2, also known as TRPC2, is a protein that in humans is encoded by the TRPC2 pseudogene. This protein is not expressed in humans but is in certain other species such as mouse.

<span class="mw-page-title-main">TRPC3</span> Protein and coding gene in humans

Short transient receptor potential channel 3 (TrpC3) also known as transient receptor protein 3 (TRP-3) is a protein that in humans is encoded by the TRPC3 gene. The TRPC3/6/7 subfamily are implicated in the regulation of vascular tone, cell growth, proliferation and pathological hypertrophy. These are diacylglycerol-sensitive cation channels known to regulate intracellular calcium via activation of the phospholipase C (PLC) pathway and/or by sensing Ca2+ store depletion. Together, their role in calcium homeostasis has made them potential therapeutic targets for a variety of central and peripheral pathologies.

<span class="mw-page-title-main">TRPC4</span> Protein and coding gene in humans

The short transient receptor potential channel 4 (TrpC4), also known as Trp-related protein 4, is a protein that in humans is encoded by the TRPC4 gene.

<span class="mw-page-title-main">TRPC5</span> Protein-coding gene in the species Homo sapiens

Short transient receptor potential channel 5 (TrpC5) also known as transient receptor protein 5 (TRP-5) is a protein that in humans is encoded by the TRPC5 gene. TrpC5 is subtype of the TRPC family of mammalian transient receptor potential ion channels.

<span class="mw-page-title-main">TRPM4</span> Protein-coding gene in the species Homo sapiens

Transient receptor potential cation channel subfamily M member 4 (hTRPM4), also known as melastatin-4, is a protein that in humans is encoded by the TRPM4 gene.

<span class="mw-page-title-main">TRPM3</span> Protein-coding gene in the species Homo sapiens

Transient receptor potential cation channel subfamily M member 3 is a protein that in humans is encoded by the TRPM3 gene.

<span class="mw-page-title-main">TRPM7</span> Protein-coding gene in the species Homo sapiens

Transient receptor potential cation channel, subfamily M, member 7, also known as TRPM7, is a human gene encoding a protein of the same name.

<span class="mw-page-title-main">MCOLN3</span> Protein-coding gene in the species Homo sapiens

Mucolipin-3 also known as TRPML3 is a protein that in humans is encoded by the MCOLN3 gene. It is a member of the small family of the TRPML channels, a subgroup of the large protein family of TRP ion channels.

<span class="mw-page-title-main">Enkurin</span> Protein-coding gene in the species Homo sapiens

Enkurin is a protein that in humans is encoded by the ENKUR gene.

<span class="mw-page-title-main">RNF24</span> Protein-coding gene in the species Homo sapiens

Ring finger protein 24 is a protein that in humans is encoded by the RNF24 gene.

The transient receptor potential Ca2+ channel (TRP-CC) family (TC# 1.A.4) is a member of the voltage-gated ion channel (VIC) superfamily and consists of cation channels conserved from worms to humans. The TRP-CC family also consists of seven subfamilies (TRPC, TRPV, TRPM, TRPN, TRPA, TRPP, and TRPML) based on their amino acid sequence homology:

  1. the canonical or classic TRPs,
  2. the vanilloid receptor TRPs,
  3. the melastatin or long TRPs,
  4. ankyrin (whose only member is the transmembrane protein 1 [TRPA1])
  5. TRPN after the nonmechanoreceptor potential C (nonpC), and the more distant cousins,
  6. the polycystins
  7. and mucolipins.

Alexander G. Obukhov is an American researcher, who specializes in ion channels, molecular physiology, and vascular biology. Since 1986, Obukhov published research articles, with the most notable ones published in academic journals such as Nature, Journal of Biological Chemistry, EMBO Journal, Journal of Cell Biology, Proceedings of the National Academy of Sciences of the United States of America, and Neuron. Obukhov's research later evolved to feature multiple fields including neurophysiology, traumatic brain injury, pain, and atherosclerosis.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000144935 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000032839 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C (Oct 1995). "TRPC1, a human homolog of a Drosophila store-operated channel". Proceedings of the National Academy of Sciences of the United States of America. 92 (21): 9652–6. Bibcode:1995PNAS...92.9652W. doi: 10.1073/pnas.92.21.9652 . PMC   40860 . PMID   7568191.
  6. 1 2 Zhu X, Chu PB, Peyton M, Birnbaumer L (Oct 1995). "Molecular cloning of a widely expressed human homologue for the Drosophila trp gene". FEBS Letters. 373 (3): 193–8. Bibcode:1995FEBSL.373..193Z. doi: 10.1016/0014-5793(95)01038-G . PMID   7589464. S2CID   21180202.
  7. Xu SZ, Beech DJ (Jan 2001). "TrpC1 is a membrane-spanning subunit of store-operated Ca(2+) channels in native vascular smooth muscle cells". Circulation Research. 88 (1): 84–7. doi: 10.1161/01.res.88.1.84 . PMID   11139478.
  8. Skopin A, Shalygin A, Vigont V, Zimina O, Glushankova L, Mozhayeva GN, Kaznacheyeva E (Feb 2013). "TRPC1 protein forms only one type of native store-operated channels in HEK293 cells". Biochimie. 95 (2): 347–53. doi:10.1016/j.biochi.2012.10.004. PMID   23079337.
  9. Fowler MA, Sidiropoulou K, Ozkan ED, Phillips CW, Cooper DC (2007). "Corticolimbic expression of TRPC4 and TRPC5 channels in the rodent brain". PLOS ONE. 2 (6): e573. Bibcode:2007PLoSO...2..573F. doi: 10.1371/journal.pone.0000573 . PMC   1892805 . PMID   17593972.
  10. 1 2 Cooper, Donald; Fowler, Melissa; Varnell, Andrew; Dietrich, A.; Birnbaumer, L.; Cooper, Donald (2012). "Deletion of the trpc1 gene and the effects on locomotor and conditioned place-preference responses to cocaine". Nature Precedings. doi: 10.1038/npre.2012.7153 .
  11. Yuan JP, Kiselyov K, Shin DM, Chen J, Shcheynikov N, Kang SH, Dehoff MH, Schwarz MK, Seeburg PH, Muallem S, Worley PF (Sep 2003). "Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors". Cell. 114 (6): 777–89. doi: 10.1016/s0092-8674(03)00716-5 . PMID   14505576. S2CID   10552676.
  12. Tsiokas L, Arnould T, Zhu C, Kim E, Walz G, Sukhatme VP (Mar 1999). "Specific association of the gene product of PKD2 with the TRPC1 channel". Proceedings of the National Academy of Sciences of the United States of America. 96 (7): 3934–9. Bibcode:1999PNAS...96.3934T. doi: 10.1073/pnas.96.7.3934 . JSTOR   47742. PMC   22398 . PMID   10097141.
  13. Mehta D, Ahmmed GU, Paria BC, Holinstat M, Voyno-Yasenetskaya T, Tiruppathi C, Minshall RD, Malik AB (Aug 2003). "RhoA interaction with inositol 1,4,5-trisphosphate receptor and transient receptor potential channel-1 regulates Ca2+ entry. Role in signaling increased endothelial permeability". The Journal of Biological Chemistry. 278 (35): 33492–500. doi: 10.1074/jbc.M302401200 . PMID   12766172.
  14. 1 2 3 Strübing C, Krapivinsky G, Krapivinsky L, Clapham DE (Oct 2003). "Formation of novel TRPC channels by complex subunit interactions in embryonic brain". The Journal of Biological Chemistry. 278 (40): 39014–9. doi: 10.1074/jbc.M306705200 . PMID   12857742.
  15. Xu XZ, Li HS, Guggino WB, Montell C (Jun 1997). "Coassembly of TRP and TRPL produces a distinct store-operated conductance". Cell. 89 (7): 1155–64. doi: 10.1016/s0092-8674(00)80302-5 . PMID   9215637. S2CID   15275438.
  16. 1 2 Hofmann T, Schaefer M, Schultz G, Gudermann T (May 2002). "Subunit composition of mammalian transient receptor potential channels in living cells". Proceedings of the National Academy of Sciences of the United States of America. 99 (11): 7461–6. Bibcode:2002PNAS...99.7461H. doi: 10.1073/pnas.102596199 . PMC   124253 . PMID   12032305.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.