KvLQT2

Last updated
KCNQ2
Kcnq2.png
Identifiers
Aliases KCNQ2 , BFNC, BFNS1, EBN, EBN1, EIEE7, ENB1, HNSPC, KCNA11, KV7.2, KVEBN1, potassium voltage-gated channel subfamily Q member 2, DEE7
External IDs OMIM: 602235; MGI: 1309503; HomoloGene: 26174; GeneCards: KCNQ2; OMA:KCNQ2 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)
RefSeq (protein)
Location (UCSC) Chr 20: 63.4 – 63.47 Mb Chr 2: 180.72 – 180.78 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Kv7.2 (KvLQT2) is a voltage- and lipid-gated potassium channel protein coded for by the gene KCNQ2.

It is associated with benign familial neonatal epilepsy.

Function

The M channel is a slowly activating and deactivating potassium channel that plays a critical role in the regulation of neuronal excitability. The M channel is formed by the association of the protein encoded by this gene and a related protein encoded by the KCNQ3 gene, both integral membrane proteins. M channel currents are inhibited by M1 muscarinic acetylcholine receptors and activated by retigabine, a novel anti-convulsant drug. Defects in this gene are a cause of benign familial neonatal convulsions type 1 (BFNC), also known as epilepsy, benign neonatal type 1 (EBN1). At least five transcript variants encoding five different isoforms have been found for this gene. [5]

Ligands

ICA-069673 ICA-069673.png
ICA-069673
Compound #40 (Amato 2011) Amato's potassium-channel opener number 40 (2011).png
Compound #40 (Amato 2011)

Related Research Articles

Benign familial neonatal seizures (BFNS), also referred to as benign familial neonatal epilepsy (BFNE), is a rare autosomal dominant inherited form of seizures. This condition manifests in newborns as brief and frequent episodes of tonic-clonic seizures with asymptomatic periods in between. Characteristically, seizure activity spontaneously ends during infancy and does not affect childhood development. However, some studies have reported that a minority of children with BFNS consequently develop intellectual disability. Additionally, BFNS increases lifetime susceptibility to seizures as approximately 14% of those afflicted go on to develop epilepsy later in life. There are three known genetic causes of BFNE, two being the voltage-gated potassium channels KCNQ2 (BFNC1) and KCNQ3 (BFNC2) and the third being a chromosomal inversion (BFNC3). There is no obvious correlation between most of the known mutations and clinical variability seen in BFNE.

<span class="mw-page-title-main">KvLQT3</span> Protein-coding gene in the species Homo sapiens

Kv7.3 (KvLQT3) is a potassium channel protein coded for by the gene KCNQ3.

<span class="mw-page-title-main">KCNA2</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily A member 2 also known as Kv1.2 is a protein that in humans is encoded by the KCNA2 gene.

<span class="mw-page-title-main">KCNA4</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily A member 4 also known as Kv1.4 is a protein that in humans is encoded by the KCNA4 gene. It contributes to the cardiac transient outward potassium current (Ito1), the main contributing current to the repolarizing phase 1 of the cardiac action potential.

SCN2A Protein-coding gene in the species Homo sapiens

Sodium channel protein type 2 subunit alpha, is a protein that in humans is encoded by the SCN2A gene. Functional sodium channels contain an ion conductive alpha subunit and one or more regulatory beta subunits. Sodium channels which contain sodium channel protein type 2 subunit alpha are sometimes called Nav1.2 channels.

<span class="mw-page-title-main">KCNMB1</span> Protein-coding gene in the species Homo sapiens

Calcium-activated potassium channel subunit beta-1 is a protein that in humans is encoded by the KCNMB1 gene.

<span class="mw-page-title-main">KCNQ4</span> Mammalian protein found in Homo sapiens

Potassium voltage-gated channel subfamily KQT member 4, also known as voltage-gated potassium channel subunit Kv7.4, is a protein that in humans is encoded by the KCNQ4 gene.

<span class="mw-page-title-main">CACNA2D1</span> Protein-coding gene in the species Homo sapiens

Voltage-dependent calcium channel subunit alpha-2/delta-1 is a protein that in humans is encoded by the CACNA2D1 gene.

<span class="mw-page-title-main">KCNQ5</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily KQT member 5 is a protein that in humans is encoded by the KCNQ5 gene.

<span class="mw-page-title-main">KCNS3</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily S member 3 (Kv9.3) is a protein that in humans is encoded by the KCNS3 gene. KCNS3 gene belongs to the S subfamily of the potassium channel family. It is highly expressed in pulmonary artery myocytes, placenta, and parvalbumin-containing GABA neurons in brain cortex. In humans, single-nucleotide polymorphisms of the KCNS3 gene are associated with airway hyperresponsiveness, whereas decreased KCNS3 mRNA expression is found in the prefrontal cortex of patients with schizophrenia.

<span class="mw-page-title-main">KCNC1</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily C member 1 is a protein that in humans is encoded by the KCNC1 gene.

<span class="mw-page-title-main">KCNG1</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily G member 1 is a protein that in humans is encoded by the KCNG1 gene.

<span class="mw-page-title-main">KCNA7</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily A member 7 also known as Kv1.7 is a protein that in humans is encoded by the KCNA7 gene. The protein encoded by this gene is a voltage-gated potassium channel subunit. It may contribute to the cardiac transient outward potassium current (Ito1), the main contributing current to the repolarizing phase 1 of the cardiac action potential.

<span class="mw-page-title-main">KCNB2</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily B member 2 is a protein that in humans is encoded by the KCNB2 gene. The protein encoded by this gene is a voltage-gated potassium channel subunit.

<span class="mw-page-title-main">KCNF1</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily F member 1 is a protein that in humans is encoded by the KCNF1 gene. The protein encoded by this gene is a voltage-gated potassium channel subunit.

<span class="mw-page-title-main">KCNV1</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily V member 1 is a protein that in humans is encoded by the KCNV1 gene. The protein encoded by this gene is a voltage-gated potassium channel subunit.

<span class="mw-page-title-main">KCNS2</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily S member 2 is a protein that in humans is encoded by the KCNS2 gene. The protein encoded by this gene is a voltage-gated potassium channel subunit.

<span class="mw-page-title-main">KCNH6</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily H member 6 is a protein that in humans is encoded by the KCNH6 gene. The protein encoded by this gene is a voltage-gated potassium channel subunit.

A potassium channel opener is a type of drug which facilitates ion transmission through potassium channels.

M current is a type of noninactivating potassium current first discovered in bullfrog sympathetic ganglion cells.

References

  1. 1 2 3 ENSG00000281151 GRCh38: Ensembl release 89: ENSG00000075043, ENSG00000281151 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000016346 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: KCNQ2 potassium voltage-gated channel, KQT-like subfamily, member 2".
  6. Amato G (2011). "N -Pyridyl and Pyrimidine Benzamides as KCNQ2/Q3 Potassium Channel Openers for the Treatment of Epilepsy". ACS Medicinal Chemistry Letters. 2 (6): 481–484. doi:10.1021/ml200053x. PMC   4018159 . PMID   24900334.
  7. Cheung YY, Yu H, Xu K, Zou B, Wu M, McManus OB, Li M, Lindsley CW, Hopkins CR (August 2012). "Discovery of a series of 2-phenyl-N-(2-(pyrrolidin-1-yl)phenyl)acetamides as novel molecular switches that modulate modes of K(v)7.2 (KCNQ2) channel pharmacology: identification of (S)-2-phenyl-N-(2-(pyrrolidin-1-yl)phenyl)butanamide (ML252) as a potent, brain penetrant K(v)7.2 channel inhibitor". Journal of Medicinal Chemistry. 55 (15): 6975–9. doi:10.1021/jm300700v. PMC   3530927 . PMID   22793372.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.