TRPM7

Last updated
TRPM7
Protein TRPM7 PDB 1ia9.png
Identifiers
Aliases TRPM7 , ALSPDC, CHAK, CHAK1, LTRPC7, LTrpC-7, TRP-PLIK, transient receptor potential cation channel subfamily M member 7
External IDs OMIM: 605692 MGI: 1929996 HomoloGene: 9774 GeneCards: TRPM7
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001301212
NM_017672

NM_001164325
NM_021450

RefSeq (protein)

NP_001288141
NP_060142

NP_001157797
NP_067425

Location (UCSC) Chr 15: 50.55 – 50.69 Mb Chr 2: 126.63 – 126.72 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Transient receptor potential cation channel, subfamily M, member 7, also known as TRPM7, is a human gene encoding a protein of the same name.

Contents

Function

TRPs, mammalian homologs of the Drosophila transient receptor potential (trp) protein, are ion channels that are thought to mediate capacitative calcium entry into the cell. TRP-PLIK is a protein that is both an ion channel and a kinase. As a channel, it conducts calcium and monovalent cations to depolarize cells and increase intracellular calcium. As a kinase, it is capable of phosphorylating itself and other substrates. The kinase activity is necessary for channel function, as shown by its dependence on intracellular ATP and by the kinase mutants. [5]

Interactions

TRPM7 has been shown to interact with PLCB1 [6] and PLCB2. [6]

Clinical relevance

Defects in this gene have been associated with magnesium deficiency in human microvascular endothelial cells. [7]

See also

Related Research Articles

Transient receptor potential channels are a group of ion channels located mostly on the plasma membrane of numerous animal cell types. Most of these are grouped into two broad groups: Group 1 includes TRPC, TRPV, TRPVL, TRPM, TRPS, TRPN, and TRPA. Group 2 consists of TRPP and TRPML. Other less-well categorized TRP channels exist, including yeast channels and a number of Group 1 and Group 2 channels present in non-animals. Many of these channels mediate a variety of sensations such as pain, temperature, different kinds of tastes, pressure, and vision. In the body, some TRP channels are thought to behave like microscopic thermometers and used in animals to sense hot or cold. Some TRP channels are activated by molecules found in spices like garlic (allicin), chili pepper (capsaicin), wasabi ; others are activated by menthol, camphor, peppermint, and cooling agents; yet others are activated by molecules found in cannabis or stevia. Some act as sensors of osmotic pressure, volume, stretch, and vibration. Most of the channels are activated or inhibited by signaling lipids and contribute to a family of lipid-gated ion channels.

TRPC is a family of transient receptor potential cation channels in animals.

TRPM is a family of transient receptor potential ion channels (M standing for wikt:melastatin). Functional TRPM channels are believed to form tetramers. The TRPM family consists of eight different channels, TRPM1–TRPM8.

<span class="mw-page-title-main">MCOLN1</span> Protein-coding gene in the species Homo sapiens

Mucolipin-1 also known as TRPML1 is a protein that in humans is encoded by the MCOLN1 gene. It is a member of the small family of the TRPML channels, a subgroup of the large protein family of TRP ion channels.

<span class="mw-page-title-main">TRPM6</span> Protein-coding gene in the species Homo sapiens

TRPM6 is a transient receptor potential ion channel associated with hypomagnesemia with secondary hypocalcemia.

<span class="mw-page-title-main">TRPM1</span> Protein-coding gene in the species Homo sapiens

Transient receptor potential cation channel subfamily M member 1 is a protein that in humans is encoded by the TRPM1 gene.

<span class="mw-page-title-main">TRPC1</span> Protein and coding gene in humans

Transient receptor potential canonical 1 (TRPC1) is a protein that in humans is encoded by the TRPC1 gene.

<span class="mw-page-title-main">TRPC4</span> Protein and coding gene in humans

The short transient receptor potential channel 4 (TrpC4), also known as Trp-related protein 4, is a protein that in humans is encoded by the TRPC4 gene.

<span class="mw-page-title-main">TRPC5</span> Protein-coding gene in the species Homo sapiens

Short transient receptor potential channel 5 (TrpC5) also known as transient receptor protein 5 (TRP-5) is a protein that in humans is encoded by the TRPC5 gene. TrpC5 is subtype of the TRPC family of mammalian transient receptor potential ion channels.

<span class="mw-page-title-main">TRPM2</span> Protein-coding gene in the species Homo sapiens

Transient receptor potential cation channel, subfamily M, member 2, also known as TRPM2, is a protein that in humans is encoded by the TRPM2 gene.

<span class="mw-page-title-main">TRPM5</span> Protein-coding gene in the species Homo sapiens

Transient receptor potential cation channel subfamily M member 5 (TRPM5), also known as long transient receptor potential channel 5 is a protein that in humans is encoded by the TRPM5 gene.

<span class="mw-page-title-main">TRPV2</span> Protein-coding gene in the species Homo sapiens

Transient receptor potential cation channel subfamily V member 2 is a protein that in humans is encoded by the TRPV2 gene. TRPV2 is a nonspecific cation channel that is a part of the TRP channel family. This channel allows the cell to communicate with its extracellular environment through the transfer of ions, and responds to noxious temperatures greater than 52 °C. It has a structure similar to that of potassium channels, and has similar functions throughout multiple species; recent research has also shown multiple interactions in the human body.

<span class="mw-page-title-main">TRPM4</span> Protein-coding gene in the species Homo sapiens

Transient receptor potential cation channel subfamily M member 4 (hTRPM4), also known as melastatin-4, is a protein that in humans is encoded by the TRPM4 gene.

<span class="mw-page-title-main">TRPM8</span> Protein-coding gene in the species Homo sapiens

Transient receptor potential cation channel subfamily M (melastatin) member 8 (TRPM8), also known as the cold and menthol receptor 1 (CMR1), is a protein that in humans is encoded by the TRPM8 gene. The TRPM8 channel is the primary molecular transducer of cold somatosensation in humans. In addition, mints can desensitize a region through the activation of TRPM8 receptors.

<span class="mw-page-title-main">TRPM3</span> Protein-coding gene in the species Homo sapiens

Transient receptor potential cation channel subfamily M member 3 is a protein that in humans is encoded by the TRPM3 gene.

<span class="mw-page-title-main">TRPV5</span> Protein-coding gene in the species Homo sapiens

Transient receptor potential cation channel subfamily V member 5 is a calcium channel protein that in humans is encoded by the TRPV5 gene.

<span class="mw-page-title-main">PLCB1</span> Protein-coding gene in the species Homo sapiens

1-Phosphatidylinositol-4,5-bisphosphate phospholipase beta-1 is an enzyme that in humans is encoded by the PLCB1 gene.

<span class="mw-page-title-main">PLCB2</span> Protein-coding gene in the species Homo sapiens

1-Phosphatidylinositol-4,5-bisphosphate phosphodiesterase beta-2 is an enzyme that in humans is encoded by the PLCB2 gene.

<span class="mw-page-title-main">MCOLN2</span> Protein-coding gene in the species Homo sapiens

Mucolipin-2 also known as TRPML2 is a protein that in humans is encoded by the MCOLN2 gene. It is a member of the small family of the TRPML channels, a subgroup of the large protein family of TRP ion channels.

The transient receptor potential Ca2+ channel (TRP-CC) family (TC# 1.A.4) is a member of the voltage-gated ion channel (VIC) superfamily and consists of cation channels conserved from worms to humans. The TRP-CC family also consists of seven subfamilies (TRPC, TRPV, TRPM, TRPN, TRPA, TRPP, and TRPML) based on their amino acid sequence homology:

  1. the canonical or classic TRPs,
  2. the vanilloid receptor TRPs,
  3. the melastatin or long TRPs,
  4. ankyrin (whose only member is the transmembrane protein 1 [TRPA1])
  5. TRPN after the nonmechanoreceptor potential C (nonpC), and the more distant cousins,
  6. the polycystins
  7. and mucolipins.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000092439 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000027365 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: TRPM7 transient receptor potential cation channel, subfamily M, member 7".
  6. 1 2 Runnels LW, Yue L, Clapham DE (May 2002). "The TRPM7 channel is inactivated by PIP(2) hydrolysis". Nat. Cell Biol. 4 (5): 329–36. doi:10.1038/ncb781. PMID   11941371. S2CID   21592843.
  7. Baldoli E, Maier JA (2012). "Silencing TRPM7 mimics the effects of magnesium deficiency in human microvascular endothelial cells". Angiogenesis. 15 (1): 47–57. doi:10.1007/s10456-011-9242-0. PMID   22183257. S2CID   16274084.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.