KCNN1

Last updated
KCNN1
Identifiers
Aliases KCNN1 , KCa2.1, SK1, SKCA1, hSK1, potassium calcium-activated channel subfamily N member 1
External IDs OMIM: 602982 MGI: 1933993 HomoloGene: 37595 GeneCards: KCNN1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_002248

NM_032397

RefSeq (protein)

NP_002239

NP_115773
NP_001350336
NP_001350337

Location (UCSC) Chr 19: 17.95 – 18 Mb n/a
PubMed search [2] [3]
Wikidata
View/Edit Human View/Edit Mouse

Potassium intermediate/small conductance calcium-activated channel, subfamily N, member 1 , also known as KCNN1 is a human gene encoding the KCa2.1 protein. [4]

Contents

Action potentials in vertebrate neurons are followed by an afterhyperpolarization (AHP) that may persist for several seconds and may have profound consequences for the firing pattern of the neuron. Each component of the AHP is kinetically distinct and is mediated by different calcium-activated potassium channels. The protein encoded by this gene is activated before membrane hyperpolarization and is thought to regulate neuronal excitability by contributing to the slow component of synaptic AHP. The KCa2.1 protein is an integral membrane protein that forms a voltage-independent calcium-activated channel with three other calmodulin-binding subunits. The KCNN1 gene is a member of the KCNN family of potassium channel genes. [4]

See also

Related Research Articles

Calcium-activated potassium channels are potassium channels gated by calcium, or that are structurally or phylogenetically related to calcium gated channels. They were first discovered in 1958 by Gardos who saw that calcium levels inside of a cell could affect the permeability of potassium through that cell membrane. Then in 1970, Meech was the first to observe that intracellular calcium could trigger potassium currents. In humans they are divided into three subtypes: large conductance or BK channels, which have very high conductance which range from 100 to 300 pS, intermediate conductance or IK channels, with intermediate conductance ranging from 25 to 100 pS, and small conductance or SK channels with small conductances from 2-25 pS.

<span class="mw-page-title-main">SK channel</span> Protein subfamily of calcium-activated potassium channels

SK channels are a subfamily of calcium-activated potassium channels. They are so called because of their small single channel conductance in the order of 10 pS. SK channels are a type of ion channel allowing potassium cations to cross the cell membrane and are activated (opened) by an increase in the concentration of intracellular calcium through N-type calcium channels. Their activation limits the firing frequency of action potentials and is important for regulating afterhyperpolarization in the neurons of the central nervous system as well as many other types of electrically excitable cells. This is accomplished through the hyperpolarizing leak of positively charged potassium ions along their concentration gradient into the extracellular space. This hyperpolarization causes the membrane potential to become more negative. SK channels are thought to be involved in synaptic plasticity and therefore play important roles in learning and memory.

<span class="mw-page-title-main">KvLQT3</span> Protein-coding gene in the species Homo sapiens

Kv7.3 (KvLQT3) is a potassium channel protein coded for by the gene KCNQ3.

<span class="mw-page-title-main">SK3</span> Protein-coding gene

SK3 also known as KCa2.3 is a protein that in humans is encoded by the KCNN3 gene.

<span class="mw-page-title-main">Cation channel superfamily</span> Family of ion channel proteins

The transmembrane cation channel superfamily was defined in InterPro and Pfam as the family of tetrameric ion channels. These include the sodium, potassium, calcium, ryanodine receptor, HCN, CNG, CatSper, and TRP channels. This large group of ion channels apparently includes families 1.A.1, 1.A.2, 1.A.3, and 1.A.4 of the TCDB transporter classification.

<span class="mw-page-title-main">Calcium-activated potassium channel subunit alpha-1</span> Voltage-gated potassium channel protein

Calcium-activated potassium channel subunit alpha-1 also known as large conductance calcium-activated potassium channel, subfamily M, alpha member 1 (KCa1.1), or BK channel alpha subunit, is a voltage gated potassium channel encoded by the KCNMA1 gene and characterized by their large conductance of potassium ions (K+) through cell membranes.

<span class="mw-page-title-main">KCNN4</span> Protein-coding gene in the species Homo sapiens

Potassium intermediate/small conductance calcium-activated channel, subfamily N, member 4, also known as KCNN4, is a human gene encoding the KCa3.1 protein.

<span class="mw-page-title-main">CLCA1</span> Protein-coding gene in the species Homo sapiens

Chloride channel accessory 1 is a protein that in humans is encoded by the CLCA1 gene.

<span class="mw-page-title-main">KCNJ3</span>

G protein-activated inward rectifier potassium channel 1(GIRK-1) is encoded in the human by the gene KCNJ3.

<span class="mw-page-title-main">KCNK4</span>

Potassium channel subfamily K member 4 is a protein that in humans is encoded by the KCNK4 gene. KCNK4 protein channels are also called TRAAK channels.

<span class="mw-page-title-main">KCNMB2</span>

Calcium-activated potassium channel subunit beta-2 is a protein that in humans is encoded by the KCNMB2 gene.

<span class="mw-page-title-main">KCNMB3</span>

Calcium-activated potassium channel subunit beta-3 is a protein that in humans is encoded by the KCNMB3 gene.

<span class="mw-page-title-main">KCNN2</span>

Potassium intermediate/small conductance calcium-activated channel, subfamily N, member 2, also known as KCNN2, is a protein which in humans is encoded by the KCNN2 gene. KCNN2 is an ion channel protein also known as KCa2.2.

<span class="mw-page-title-main">KCNQ5</span>

Potassium voltage-gated channel subfamily KQT member 5 is a protein that in humans is encoded by the KCNQ5 gene.

<span class="mw-page-title-main">KCNMB4</span>

Calcium-activated potassium channel subunit beta-4 is a protein that in humans is encoded by the KCNMB4 gene.

<span class="mw-page-title-main">HCN3</span>

Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 3 is a protein that in humans is encoded by the HCN3 gene.

<span class="mw-page-title-main">KCNK17</span>

Potassium channel subfamily K member 17 is a protein that in humans is encoded by the KCNK17 gene.

<span class="mw-page-title-main">KCNU1</span> Protein-coding gene in the species Homo sapiens

Potassium channel, subfamily U, member 1, also known as KCNU1, is a gene encoding the KCa5.1 protein.

<span class="mw-page-title-main">KCNT1</span> Protein-coding gene in the species Homo sapiens

Potassium channel subfamily T, member 1, also known as KCNT1 is a human gene that encodes the KCa4.1 protein. KCa4.1 is a member of the calcium-activated potassium channel protein family

<span class="mw-page-title-main">KCNT2</span>

Potassium channel subfamily T, member 2, also known as KCNT2 is a human gene that encodes the KNa protein. KCNT2, also known as the Slick channel is an outwardly rectifying potassium channel activated by internal raises in sodium or chloride ions.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000105642 - Ensembl, May 2017
  2. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. 1 2 "Entrez Gene: KCNN1 potassium intermediate/small conductance calcium-activated channel, subfamily N, member 1".

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.