KCNN2

Last updated
KCNN2
Protein KCNN2 PDB 1g4y.png
Identifiers
Aliases KCNN2 , KCa2.2, SK2, SKCA2, SKCa 2, hSK2, potassium calcium-activated channel subfamily N member 2, DYT34, NEDMAB
External IDs OMIM: 605879 HomoloGene: 23150 GeneCards: KCNN2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001278204
NM_021614
NM_170775
NM_001372233

n/a

RefSeq (protein)

NP_001265133
NP_067627
NP_740721
NP_001359162

n/a

Location (UCSC) Chr 5: 114.06 – 114.5 Mb n/a
PubMed search [2] n/a
Wikidata
View/Edit Human

Potassium intermediate/small conductance calcium-activated channel, subfamily N, member 2, also known as KCNN2, is a protein which in humans is encoded by the KCNN2 gene. [3] KCNN2 is an ion channel protein also known as KCa2.2. [4]

Contents

Function

Action potentials in vertebrate neurons are followed by an afterhyperpolarization (AHP) that may persist for several seconds and may have profound consequences for the firing pattern of the neuron. Each component of the AHP is kinetically distinct and is mediated by different calcium-activated potassium channels. The KCa2.2 protein is activated before membrane hyperpolarization and is thought to regulate neuronal excitability by contributing to the slow component of synaptic AHP. KCa2.2 is an integral membrane protein that forms a voltage-independent calcium-activated channel with three other calmodulin-binding subunits. This protein is a member of the calcium-activated potassium channel family. Two transcript variants encoding different isoforms have been found for the KCNN2 gene. [4]

In a 2009 study, SK2 (KCNN2) potassium channel was overexpressed in the basolateral amygdala using a herpes simplex viral system. This reduced anxiety and stress-induced corticosterone secretion at a systemic level. SK2 overexpression also reduced dendritic arborization of the amygdala neurons. [5] In a 2015 study, it was found that UBE3A, the protein maternally deleted in Angelman syndrome, marks KCNN2 for degradation in the hippocampus, and that UBE3A deficiency is associated with an increase in KCNN2 levels. KCNN2 operates through a negative feedback loop to reduce glutamatergic NMDA receptor activation when it itself is activated by that same receptor. Angelman syndrome therefore leads to a reduction in glutamatergic NMDA receptor activation, which impairs long-term potentiation of hippocampal neurons and thus fear conditioning. [6]

See also

Related Research Articles

<span class="mw-page-title-main">BK channel</span> Family of transport proteins

BK channels (big potassium), are large conductance calcium-activated potassium channels, also known as Maxi-K, slo1, or Kca1.1. BK channels are voltage-gated potassium channels that conduct large amounts of potassium ions (K+) across the cell membrane, hence their name, big potassium. These channels can be activated (opened) by either electrical means, or by increasing Ca2+ concentrations in the cell. BK channels help regulate physiological processes, such as circadian behavioral rhythms and neuronal excitability. BK channels are also involved in many processes in the body, as it is a ubiquitous channel. They have a tetrameric structure that is composed of a transmembrane domain, voltage sensing domain, potassium channel domain, and a cytoplasmic C-terminal domain, with many X-ray structures for reference. Their function is to repolarize the membrane potential by allowing for potassium to flow outward, in response to a depolarization or increase in calcium levels.

<span class="mw-page-title-main">Potassium channel</span> Ion channel that selectively passes K+

Potassium channels are the most widely distributed type of ion channel found in virtually all organisms. They form potassium-selective pores that span cell membranes. Potassium channels are found in most cell types and control a wide variety of cell functions.

<span class="mw-page-title-main">Repolarization</span>

In neuroscience, repolarization refers to the change in membrane potential that returns it to a negative value just after the depolarization phase of an action potential which has changed the membrane potential to a positive value. The repolarization phase usually returns the membrane potential back to the resting membrane potential. The efflux of potassium (K+) ions results in the falling phase of an action potential. The ions pass through the selectivity filter of the K+ channel pore.

<span class="mw-page-title-main">Calcium signaling</span> Intracellular communication process

Calcium signaling is the use of calcium ions (Ca2+) to communicate and drive intracellular processes often as a step in signal transduction. Ca2+ is important for cellular signalling, for once it enters the cytosol of the cytoplasm it exerts allosteric regulatory effects on many enzymes and proteins. Ca2+ can act in signal transduction resulting from activation of ion channels or as a second messenger caused by indirect signal transduction pathways such as G protein-coupled receptors.

Calcium-activated potassium channels are potassium channels gated by calcium, or that are structurally or phylogenetically related to calcium gated channels. They were first discovered in 1958 by Gardos who saw that calcium levels inside of a cell could affect the permeability of potassium through that cell membrane. Then in 1970, Meech was the first to observe that intracellular calcium could trigger potassium currents. In humans they are divided into three subtypes: large conductance or BK channels, which have very high conductance which range from 100 to 300 pS, intermediate conductance or IK channels, with intermediate conductance ranging from 25 to 100 pS, and small conductance or SK channels with small conductances from 2-25 pS.

K<sub>ir</sub>2.1 Protein-coding gene in the species Homo sapiens

The Kir2.1 inward-rectifier potassium channel is a lipid-gated ion channel encoded by the KCNJ2 gene.

<span class="mw-page-title-main">SK channel</span> Protein subfamily of calcium-activated potassium channels

SK channels are a subfamily of calcium-activated potassium channels. They are so called because of their small single channel conductance in the order of 10 pS. SK channels are a type of ion channel allowing potassium cations to cross the cell membrane and are activated (opened) by an increase in the concentration of intracellular calcium through N-type calcium channels. Their activation limits the firing frequency of action potentials and is important for regulating afterhyperpolarization in the neurons of the central nervous system as well as many other types of electrically excitable cells. This is accomplished through the hyperpolarizing leak of positively charged potassium ions along their concentration gradient into the extracellular space. This hyperpolarization causes the membrane potential to become more negative. SK channels are thought to be involved in synaptic plasticity and therefore play important roles in learning and memory.

<span class="mw-page-title-main">SK3</span> Protein-coding gene

SK3 also known as KCa2.3 is a protein that in humans is encoded by the KCNN3 gene.

<span class="mw-page-title-main">Cation channel superfamily</span> Family of ion channel proteins

The transmembrane cation channel superfamily was defined in InterPro and Pfam as the family of tetrameric ion channels. These include the sodium, potassium, calcium, ryanodine receptor, HCN, CNG, CatSper, and TRP channels. This large group of ion channels apparently includes families 1.A.1, 1.A.2, 1.A.3, and 1.A.4 of the TCDB transporter classification.

<span class="mw-page-title-main">Calcium-activated potassium channel subunit alpha-1</span> Voltage-gated potassium channel protein

Calcium-activated potassium channel subunit alpha-1 also known as large conductance calcium-activated potassium channel, subfamily M, alpha member 1 (KCa1.1), or BK channel alpha subunit, is a voltage gated potassium channel encoded by the KCNMA1 gene and characterized by their large conductance of potassium ions (K+) through cell membranes.

<span class="mw-page-title-main">KCNN4</span> Protein-coding gene in the species Homo sapiens

Potassium intermediate/small conductance calcium-activated channel, subfamily N, member 4, also known as KCNN4, is a human gene encoding the KCa3.1 protein.

<span class="mw-page-title-main">KCNA3</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel, shaker-related subfamily, member 3, also known as KCNA3 or Kv1.3, is a protein that in humans is encoded by the KCNA3 gene.

<span class="mw-page-title-main">KCNB1</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel, Shab-related subfamily, member 1, also known as KCNB1 or Kv2.1, is a protein that, in humans, is encoded by the KCNB1 gene.

<span class="mw-page-title-main">KCNK3</span> Protein-coding gene in the species Homo sapiens

Potassium channel subfamily K member 3 is a protein that in humans is encoded by the KCNK3 gene.

<span class="mw-page-title-main">KCNK4</span> Protein-coding gene in the species Homo sapiens

Potassium channel subfamily K member 4 is a protein that in humans is encoded by the KCNK4 gene. KCNK4 protein channels are also called TRAAK channels.

<span class="mw-page-title-main">KCNMB2</span> Protein-coding gene in the species Homo sapiens

Calcium-activated potassium channel subunit beta-2 is a protein that in humans is encoded by the KCNMB2 gene.

<span class="mw-page-title-main">KCNN1</span> Protein-coding gene in the species Homo sapiens

Potassium intermediate/small conductance calcium-activated channel, subfamily N, member 1 , also known as KCNN1 is a human gene encoding the KCa2.1 protein.

<span class="mw-page-title-main">KCNU1</span> Protein-coding gene in the species Homo sapiens

Potassium channel, subfamily U, member 1, also known as KCNU1, is a gene encoding the KCa5.1 protein.

<span class="mw-page-title-main">Stichodactyla toxin</span> Protein family

Stichodactyla toxin is a 35-residue basic peptide from the sea anemone Stichodactyla helianthus that blocks a number of potassium channels. Related peptides form a conserved family of protein domains known as the ShkT domain. Another well-studied toxin of the family is BgK from Bunodosoma granulifera.

<span class="mw-page-title-main">KCNT1</span> Protein-coding gene in the species Homo sapiens

Potassium channel subfamily T, member 1, also known as KCNT1 is a human gene that encodes the KCa4.1 protein. KCa4.1 is a member of the calcium-activated potassium channel protein family

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000080709 - Ensembl, May 2017
  2. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. Wei AD, Gutman GA, Aldrich R, Chandy KG, Grissmer S, Wulff H (December 2005). "International Union of Pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels". Pharmacol. Rev. 57 (4): 463–72. doi:10.1124/pr.57.4.9. PMID   16382103. S2CID   8290401.
  4. 1 2 "Entrez Gene: KCNN2 potassium intermediate/small conductance calcium-activated channel, subfamily N, member 2".
  5. Mitra R, Ferguson D, Sapolsky RM (February 2009). "SK2 potassium channel over-expression in basolateral amygdala reduces anxiety, stress-induced corticosterone and dendritic arborization". Mol. Psychiatry. 14 (9): 847–55, 827. doi:10.1038/mp.2009.9. PMC   2763614 . PMID   19204724.
  6. Sun, Jiandong; Zhu, Guoqi; Liu, Yan; Standley, Steve; Ji, Angela; Tunuguntla, Rashmi; Wang, Yubin; Claus, Chad; Luo, Yun; Baudry, Michel; Bi, Xiaoning (2015-07-21). "UBE3A Regulates Synaptic Plasticity and Learning and Memory by Controlling SK2 Channel Endocytosis". Cell Reports. 12 (3): 449–461. doi:10.1016/j.celrep.2015.06.023. ISSN   2211-1247. PMC   4520703 . PMID   26166566.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.