KCNK7 | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | KCNK7 , K2p7.1, TWIK3, potassium two pore domain channel subfamily K member 7 | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | OMIM: 603940 MGI: 1341841 HomoloGene: 43131 GeneCards: KCNK7 | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
Potassium channel, subfamily K, member 7, also known as KCNK7 or K2P7.1 is a protein which is encoded in humans by the KCNK7 gene. K2P7.1 is a potassium channel containing two pore-forming P domains. [5] [6] [7] Multiple transcript variants encoding different isoforms have been found for this gene. [8]
This gene encodes a member of the superfamily of potassium channel proteins containing two pore-forming P domains. The product of this gene has not been shown to be a functional channel; It may require other non-pore-forming proteins for activity. [8]
Potassium channels are the most widely distributed type of ion channel found in virtually all organisms. They form potassium-selective pores that span cell membranes. Potassium channels are found in most cell types and control a wide variety of cell functions.
The two-pore-domain or tandem pore domain potassium channels are a family of 15 members that form what is known as leak channels which possess Goldman-Hodgkin-Katz (open) rectification. These channels are regulated by several mechanisms including signaling lipids, oxygen tension, pH, mechanical stretch, and G-proteins. Their name is derived from the fact that the α subunits consist of four transmembrane segments, and each pair of transmembrane segments contains a pore loop between the two transmembrane segments. Thus, each subunit has two pore loops. As such, they structurally correspond to two inward-rectifier α subunits and thus form dimers in the membrane.
Potassium channel subfamily K member 2, also known as TREK-1, is a protein that in humans is encoded by the KCNK2 gene.
G protein-activated inward rectifier potassium channel 1(GIRK-1) is encoded in the human by the gene KCNJ3.
Potassium channel subfamily K member 3 is a protein that in humans is encoded by the KCNK3 gene.
Potassium channel subfamily K member 1 is a protein that in humans is encoded by the KCNK1 gene.
Potassium channel subfamily K member 9 is a protein that in humans is encoded by the KCNK9 gene.
Potassium channel subfamily K member 4 is a protein that in humans is encoded by the KCNK4 gene. KCNK4 protein channels are also called TRAAK channels.
Potassium channel subfamily K member 6 is a protein that in humans is encoded by the KCNK6 gene.
Potassium channel subfamily K member 5 is a protein that in humans is encoded by the KCNK5 gene.
Calcium-activated potassium channel subunit beta-4 is a protein that in humans is encoded by the KCNMB4 gene.
G protein-activated inward rectifier potassium channel 3 is a protein that in humans is encoded by the KCNJ9 gene.
Potassium channel subfamily K member 15 is a protein that in humans is encoded by the KCNK15 gene.
Potassium channel subfamily K member 17 is a protein that in humans is encoded by the KCNK17 gene.
Potassium channel, subfamily K, member 10, also known as KCNK10 is a human gene. The protein encoded by this gene, K2P10.1, is a potassium channel containing two pore-forming P domains.
Potassium channel, subfamily K, member 12, also known as KCNK12 is a human gene. The protein encoded by this gene, K2P12.1, is a potassium channel containing two pore-forming P domains.
Potassium channel, subfamily K, member 13, also known as KCNK13 is a human gene. The protein encoded by this gene, K2P13.1 is a potassium channel containing two pore-forming P domains.
Potassium channel subfamily K member 16 is a protein that in humans is encoded by the KCNK16 gene. The protein encoded by this gene, K2P16.1, is a potassium channel containing two pore-forming P domains.
Potassium channel subfamily K member 18 (KCNK18), also known as TWIK-related spinal cord potassium channel (TRESK) or K2P18.1 is a protein that in humans is encoded by the KCNK18 gene. K2P18.1 is a potassium channel containing two pore-forming P domains.
A potassium channel opener is a type of drug which facilitates ion transmission through potassium channels.