TRPM1

Last updated
TRPM1
Identifiers
Aliases TRPM1 , CSNB1C, LTRPC1, MLSN1, transient receptor potential cation channel subfamily M member 1
External IDs OMIM: 603576 MGI: 1330305 HomoloGene: 19940 GeneCards: TRPM1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001252020
NM_001252024
NM_001252030
NM_002420

NM_001039104
NM_018752

RefSeq (protein)

NP_001238949
NP_001238953
NP_001238959
NP_002411

NP_001034193
NP_061222

Location (UCSC) Chr 15: 31 – 31.16 Mb Chr 7: 64.15 – 64.27 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Transient receptor potential cation channel subfamily M member 1 is a protein that in humans is encoded by the TRPM1 gene. [5] [6] [7]

Contents

Function

The protein encoded by this gene is a member of the transient receptor potential (TRP) family of non-selective cation channels. It is expressed in the retina, in a subset of bipolar cells termed ON bipolar cells. [8] [9] These cells form synapses with either rods or cones, collecting signals from them. In the dark, the signal arrives in the form of the neurotransmitter glutamate, which is detected by a G protein-coupled receptor (GPCR) signal transduction cascade. Detection of glutamate by the GPCR Metabotropic glutamate receptor 6 results in closing of the TRPM1 channel. At the onset of light, glutamate release is halted and mGluR6 is deactivated; this results in opening of the TRPM1 channel, influx of sodium and calcium, and depolarization of the bipolar cell. [10] [11]

In addition to the retina, TRPM1 is also expressed in melanocytes, which are melanin-producing cells in the skin. The expression of TRPM1 is inversely correlated with melanoma aggressiveness, suggesting that it might suppress melanoma metastasis. [12] However, subsequent work showed that a microRNA located in an intron of the TRPM1 gene, rather than the TRPM1 protein itself, is responsible for the tumor suppressor function. [13] [14] The expression of both TRPM1 and the microRNA are regulated by the Microphthalmia-associated transcription factor. [15] [16] [17] [13]

Clinical significance

Mutations in TRPM1 are associated with congenital stationary night blindness in humans [18] [19] [20] [21] and coat spotting patterns in Appaloosa horses. [22]

See also

Related Research Articles

Photoreceptor cell Type of neuroepithelial cell

A photoreceptor cell is a specialized type of neuroepithelial cell found in the retina that is capable of visual phototransduction. The great biological importance of photoreceptors is that they convert light into signals that can stimulate biological processes. To be more specific, photoreceptor proteins in the cell absorb photons, triggering a change in the cell's membrane potential.

Transient receptor potential channels are a group of ion channels located mostly on the plasma membrane of numerous animal cell types. Most of these are grouped into two broad groups: Group 1 includes TRPC, TRPV, TRPVL, TRPM, TRPS, TRPN, and TRPA. Group 2 consists of TRPP and TRPML. Other less-well categorized TRP channels exist, including yeast channels and a number of Group 1 and Group 2 channels present in non-animals. Many of these channels mediate a variety of sensations such as pain, temperature, different kinds of tastes, pressure, and vision. In the body, some TRP channels are thought to behave like microscopic thermometers and used in animals to sense hot or cold. Some TRP channels are activated by molecules found in spices like garlic (allicin), chili pepper (capsaicin), wasabi ; others are activated by menthol, camphor, peppermint, and cooling agents; yet others are activated by molecules found in cannabis or stevia. Some act as sensors of osmotic pressure, volume, stretch, and vibration. Most of the channels are activated or inhibited by signaling lipids and contribute to a family of lipid-gated ion channels.

Nyctalopia Condition making it difficult or impossible to see in relatively low light

Nyctalopia, also called night-blindness, is a condition making it difficult or impossible to see in relatively low light. It is a symptom of several eye diseases. Night blindness may exist from birth, or be caused by injury or malnutrition. It can be described as insufficient adaptation to darkness.

Microphthalmia-associated transcription factor

Microphthalmia-associated transcription factor also known as class E basic helix-loop-helix protein 32 or bHLHe32 is a protein that in humans is encoded by the MITF gene.

Congenital stationary night blindness Medical condition

Congenital stationary night blindness (CSNB) is a rare non-progressive retinal disorder. People with CSNB often have difficulty adapting to low light situations due to impaired photoreceptor transmission. These patients may also have reduced visual acuity, myopia, nystagmus, and strabismus. CSNB has two forms -- complete, also known as type-1 (CSNB1), and incomplete, also known as type-2 (CSNB2), which are distinguished by the involvement of different retinal pathways. In CSNB1, downstream neurons called bipolar cells are unable to detect neurotransmission from photoreceptor cells. CSNB1 can be caused by mutations in various genes involved in neurotransmitter detection, including NYX, GRM6, and TRPM1. In CSNB2, the photoreceptors themselves have impaired neurotransmission function; this is caused primarily by mutations in the gene CACNA1F, which encodes a voltage-gated calcium channel important for neurotransmitter release.

Rhodopsin kinase is a serine/threonine-specific protein kinase involved in phototransduction. This enzyme catalyses the following chemical reaction:

TRPM is a family of transient receptor potential ion channels. Functional TRPM channels are believed to form tetramers. The TRPM family consists of eight different channels, TRPM1–TRPM8.

TRPM2

Transient receptor potential cation channel, subfamily M, member 2, also known as TRPM2, is a protein that in humans is encoded by the TRPM2 gene.

TRPM5

Transient receptor potential cation channel subfamily M member 5 (TRPM5), also known as long transient receptor potential channel 5 is a protein that in humans is encoded by the TRPM5 gene.

TRPM4

Transient receptor potential cation channel subfamily M member 4 (hTRPM4), also known as melastatin-4, is a protein that in humans is encoded by the TRPM4 gene.

TRPM8

Transient receptor potential cation channel subfamily M (melastatin) member 8 (TRPM8), also known as the cold and menthol receptor 1 (CMR1), is a protein that in humans is encoded by the TRPM8 gene. The TRPM8 channel is the primary molecular transducer of cold somatosensation in humans. In addition, mints can desensitize a region through the activation of TRPM8 receptors.

TRPM3

Transient receptor potential cation channel subfamily M member 3 is a protein that in humans is encoded by the TRPM3 gene.

TRPM7

Transient receptor potential cation channel, subfamily M, member 7, also known as TRPM7, is a human gene encoding a protein of the same name.

GPR179

Probable G-protein coupled receptor 179 is a protein that in humans is encoded by the GPR179 gene.

Metabotropic glutamate receptor 6

Glutamate receptor, metabotropic 6, also known as GRM6 or mGluR6, is a protein which in humans is encoded by the GRM6 gene.

TAS1R1

Taste receptor type 1 member 1 is a protein that in humans is encoded by the TAS1R1 gene.

Ca<sub>v</sub>1.4

Cav1.4 also known as the calcium channel, voltage-dependent, L type, alpha 1F subunit (CACNA1F), is a human gene.

Nyctalopin

Nyctalopin is a protein located on the surface of photoreceptor-to-ON bipolar cell synapse in the retina. It is composed of 481 amino acids. and is encoded in human by the NYX gene. This gene is found on the chromosome X and has two exons. This protein is a leucine-rich proteoglycan which is expressed in the eye, spleen and brain in mice. Mutations in this gene cause congenital stationary night blindness in humans (CSNB). which is a stable retinal disorder. The consequence of this mutation results in an abnormal night vision. Nyctalopin is critical due to the fact that it generates a depolarizing bipolar cell response due to the mutation on the NYX gene. Most of the time, CSNB are associated to hygh myopia which is the result of a mutation on the same gene. Several mutations can occur on the NYX gene resulting on many form of night blindness in humans. Some studies show that these mutations are more present in Asian population than in Caucasian population. A mouse strain called nob carries a spontaneous mutation leading to a frameshift in this gene. These mice are used as an animal model for congenital stationary night blindness.

Ocular albinism type 1 Most common type of ocular albinism

Ocular albinism type 1(OA1), is the most common type of ocular albinism, with a prevalence rate of 1:50,000. It is an inheritable classical Mendelian type X-linked recessive disorder wherein the retinal pigment epithelium lacks pigment while hair and skin appear normal. Since it is usually an X-linked disorder, it occurs mostly in males, while females are carriers unless they are homozygous. About 60 missense and nonsense mutations, insertions, and deletions have been identified in Oa1. Mutations in OA1 have been linked to defective glycosylation and thus improper intracellular transportation.

Ononetin

Ononetin is a natural product from the deoxybenzoin group, which is found in the Russian traditional medicine plant Ononis spinosa. It acts as an inhibitor of the transient receptor potential ion channel TRPM3 and has analgesic effects in animal studies, as well as being used for research into the role of TRPM3 in the immune system dysfunction associated with chronic fatigue syndrome.

References

  1. 1 2 3 ENSG00000134160 GRCh38: Ensembl release 89: ENSG00000274965, ENSG00000134160 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000030523 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Hunter JJ, Shao J, Smutko JS, Dussault BJ, Nagle DL, Woolf EA, Holmgren LM, Moore KJ, Shyjan AW (Nov 1998). "Chromosomal localization and genomic characterization of the mouse melastatin gene (Mlsn1)". Genomics. 54 (1): 116–23. doi:10.1006/geno.1998.5549. PMID   9806836.
  6. Duncan LM, Deeds J, Hunter J, Shao J, Holmgren LM, Woolf EA, Tepper RI, Shyjan AW (Apr 1998). "Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis". Cancer Research. 58 (7): 1515–20. PMID   9537257.
  7. Clapham DE, Julius D, Montell C, Schultz G (Dec 2005). "International Union of Pharmacology. XLIX. Nomenclature and structure-function relationships of transient receptor potential channels". Pharmacological Reviews. 57 (4): 427–50. doi:10.1124/pr.57.4.6. PMID   16382100. S2CID   17936350.
  8. Morgans CW, Zhang J, Jeffrey BG, Nelson SM, Burke NS, Duvoisin RM, Brown RL (2009). "TRPM1 is required for the depolarizing light response in retinal ON-bipolar cells". Proc Natl Acad Sci U S A. 106 (45): 19174–8. Bibcode:2009PNAS..10619174M. doi: 10.1073/pnas.0908711106 . PMC   2776419 . PMID   19861548.
  9. Koike C, Obara T, Uriu Y, Numata T, Sanuki R, Miyata K, Koyasu T, Ueno S, Funabiki K, Tani A, Ueda H, Kondo M, Mori Y, Tachibana M, Furukawa T (2010). "TRPM1 is a component of the retinal ON bipolar cell transduction channel in the mGluR6 cascade". Proc Natl Acad Sci U S A. 107 (1): 332–7. Bibcode:2010PNAS..107..332K. doi: 10.1073/pnas.0912730107 . PMC   2806705 . PMID   19966281.
  10. Martemyanov KA, Sampath AP (2017). "The Transduction Cascade in Retinal ON-Bipolar Cells: Signal Processing and Disease". Annu Rev Vis Sci. 3: 25–51. doi:10.1146/annurev-vision-102016-061338. PMC   5778350 . PMID   28715957.
  11. Schneider FM, Mohr F, Behrendt M, Oberwinkler J (2015). "Properties and functions of TRPM1 channels in the dendritic tips of retinal ON-bipolar cells". Eur J Cell Biol. 94 (7–9): 420–7. doi:10.1016/j.ejcb.2015.06.005. PMID   26111660.
  12. "Entrez Gene: TRPM1 transient receptor potential cation channel, subfamily M, member 1".
  13. 1 2 Levy C, Khaled M, Iliopoulos D, Janas MM, Schubert S, Pinner S, Chen PH, Li S, Fletcher AL, Yokoyama S, Scott KL, Garraway LA, Song JS, Granter SR, Turley SJ, Fisher DE, Novina CD (2010). "Intronic miR-211 assumes the tumor suppressive function of its host gene in melanoma". Mol Cell. 40 (5): 841–9. doi:10.1016/j.molcel.2010.11.020. PMC   3004467 . PMID   21109473.
  14. Guo H, Carlson JA, Slominski A (2012). "Role of TRPM in melanocytes and melanoma". Exp Dermatol. 21 (9): 650–4. doi:10.1111/j.1600-0625.2012.01565.x. PMC   3422761 . PMID   22897572.
  15. Miller AJ, Du J, Rowan S, Hershey CL, Widlund HR, Fisher DE (Jan 2004). "Transcriptional regulation of the melanoma prognostic marker melastatin (TRPM1) by MITF in melanocytes and melanoma". Cancer Research. 64 (2): 509–16. doi: 10.1158/0008-5472.CAN-03-2440 . PMID   14744763.
  16. Hoek KS, Schlegel NC, Eichhoff OM, Widmer DS, Praetorius C, Einarsson SO, Valgeirsdottir S, Bergsteinsdottir K, Schepsky A, Dummer R, Steingrimsson E (Dec 2008). "Novel MITF targets identified using a two-step DNA microarray strategy". Pigment Cell & Melanoma Research. 21 (6): 665–76. doi: 10.1111/j.1755-148X.2008.00505.x . PMID   19067971.
  17. Mazar J, DeYoung K, Khaitan D, Meister E, Almodovar A, Goydos J, Ray A, Perera RJ (2010). "The regulation of miRNA-211 expression and its role in melanoma cell invasiveness". PLOS ONE. 5 (11): e13779. Bibcode:2010PLoSO...513779M. doi: 10.1371/journal.pone.0013779 . PMC   2967468 . PMID   21072171.
  18. Audo I, Kohl S, Leroy BP, Munier FL, Guillonneau X, Mohand-Saïd S, Bujakowska K, Nandrot EF, Lorenz B, Preising M, Kellner U, Renner AB, Bernd A, Antonio A, Moskova-Doumanova V, Lancelot ME, Poloschek CM, Drumare I, Defoort-Dhellemmes S, Wissinger B, Léveillard T, Hamel CP, Schorderet DF, De Baere E, Berger W, Jacobson SG, Zrenner E, Sahel JA, Bhattacharya SS, Zeitz C (Nov 2009). "TRPM1 is mutated in patients with autosomal-recessive complete congenital stationary night blindness". American Journal of Human Genetics. 85 (5): 720–9. doi:10.1016/j.ajhg.2009.10.013. PMC   2775830 . PMID   19896113.
  19. Li Z, Sergouniotis PI, Michaelides M, Mackay DS, Wright GA, Devery S, Moore AT, Holder GE, Robson AG, Webster AR (Nov 2009). "Recessive mutations of the gene TRPM1 abrogate ON bipolar cell function and cause complete congenital stationary night blindness in humans". American Journal of Human Genetics. 85 (5): 711–9. doi:10.1016/j.ajhg.2009.10.003. PMC   2775833 . PMID   19878917.
  20. Nakamura M, Sanuki R, Yasuma TR, Onishi A, Nishiguchi KM, Koike C, Kadowaki M, Kondo M, Miyake Y, Furukawa T (2010). "TRPM1 mutations are associated with the complete form of congenital stationary night blindness". Molecular Vision. 16: 425–37. PMC   2838739 . PMID   20300565.
  21. van Genderen MM, Bijveld MM, Claassen YB, Florijn RJ, Pearring JN, Meire FM, McCall MA, Riemslag FC, Gregg RG, Bergen AA, Kamermans M (Nov 2009). "Mutations in TRPM1 are a common cause of complete congenital stationary night blindness". American Journal of Human Genetics. 85 (5): 730–6. doi:10.1016/j.ajhg.2009.10.012. PMC   2775826 . PMID   19896109.
  22. Bellone RR, Brooks SA, Sandmeyer L, Murphy BA, Forsyth G, Archer S, Bailey E, Grahn B (Aug 2008). "Differential gene expression of TRPM1, the potential cause of congenital stationary night blindness and coat spotting patterns (LP) in the Appaloosa horse (Equus caballus)". Genetics. 179 (4): 1861–70. doi:10.1534/genetics.108.088807. PMC   2516064 . PMID   18660533.

This article incorporates text from the United States National Library of Medicine, which is in the public domain.