KCNJ10

Last updated

KCNJ10
Identifiers
Aliases KCNJ10 , BIRK-10, KCNJ13-PEN, KIR1.2, KIR4.1, SESAME, potassium voltage-gated channel subfamily J member 10, potassium inwardly rectifying channel subfamily J member 10
External IDs OMIM: 602208 MGI: 1194504 HomoloGene: 1689 GeneCards: KCNJ10
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_002241

NM_001039484
NM_020269

RefSeq (protein)

NP_002232

NP_001034573

Location (UCSC) Chr 1: 160 – 160.07 Mb Chr 1: 172.17 – 172.2 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

ATP-sensitive inward rectifier potassium channel 10 is a protein that in humans is encoded by the KCNJ10 gene. [5] [6] [7] [8]

Contents

Function

This gene encodes a member of the inward rectifier-type potassium channel family, Kir4.1, characterized by having a greater tendency to allow potassium to flow into, rather than out of, a cell. Kir4.1, may form a heterodimer with another potassium channel protein and may be responsible for the potassium buffering action of glial cells in the brain. Mutations in this gene have been associated with seizure susceptibility of common idiopathic generalized epilepsy syndromes. [8]

EAST syndrome

Humans with mutations in the KCNJ10 gene that cause loss of function in related K+ channels can display Epilepsy, Ataxia, Sensorineural deafness and Tubulopathy, the EAST syndrome (Gitelman syndrome phenotype) reflecting roles for KCNJ10 gene products in the brain, inner ear and kidney. [9] The Kir4.1 channel is expressed in the Stria vascularis and is essential for formation of the endolymph, the fluid that surrounds the mechanosensitive stereocilia of the sensory hair cells that make hearing possible. [10]

Rett Syndrome

Rett syndrome is a neurological disorder characterized by a mutation in the MeCP2 gene. This mutation results in less MeCP2. KCNJ10 expression is upregulated by the transcription factor MeCP2. [11] MeCP2 deficiency leads to less Kir4.1 channels present on astrocytes in the brain. Since there are fewer channels allowing potassium into the cells, extracellular potassium levels are higher. Higher extracellular potassium leaves neurons more easily excitable which could contribute to the epilepsy observed in many Rett Syndrome patients. [12]

Interactions

KCNJ10 has been shown to interact with Interleukin 16. [13]

See also

Related Research Articles

<span class="mw-page-title-main">ROMK</span> Potassium channel

The renal outer medullary potassium channel (ROMK) is an ATP-dependent potassium channel (Kir1.1) that transports potassium out of cells. It plays an important role in potassium recycling in the thick ascending limb (TAL) and potassium secretion in the cortical collecting duct (CCD) of the nephron. In humans, ROMK is encoded by the KCNJ1 gene. Multiple transcript variants encoding different isoforms have been found for this gene.

<span class="mw-page-title-main">Inward-rectifier potassium channel</span> Group of transmembrane proteins that passively transport potassium ions

Inward-rectifier potassium channels (Kir, IRK) are a specific lipid-gated subset of potassium channels. To date, seven subfamilies have been identified in various mammalian cell types, plants, and bacteria. They are activated by phosphatidylinositol 4,5-bisphosphate (PIP2). The malfunction of the channels has been implicated in several diseases. IRK channels possess a pore domain, homologous to that of voltage-gated ion channels, and flanking transmembrane segments (TMSs). They may exist in the membrane as homo- or heterooligomers and each monomer possesses between 2 and 4 TMSs. In terms of function, these proteins transport potassium (K+), with a greater tendency for K+ uptake than K+ export. The process of inward-rectification was discovered by Denis Noble in cardiac muscle cells in 1960s and by Richard Adrian and Alan Hodgkin in 1970 in skeletal muscle cells.

K<sub>ir</sub>2.1 Protein-coding gene in the species Homo sapiens

The Kir2.1 inward-rectifier potassium channel is a lipid-gated ion channel encoded by the KCNJ2 gene.

K<sub>ir</sub>6.2 Protein-coding gene in the species Homo sapiens

Kir6.2 is a major subunit of the ATP-sensitive K+ channel, a lipid-gated inward-rectifier potassium ion channel. The gene encoding the channel is called KCNJ11 and mutations in this gene are associated with congenital hyperinsulinism.

<span class="mw-page-title-main">DLG4</span> Mammalian protein found in Homo sapiens

PSD-95 also known as SAP-90 is a protein that in humans is encoded by the DLG4 gene.

<span class="mw-page-title-main">KCNJ6</span> Protein-coding gene in the species Homo sapiens

G protein-activated inward rectifier potassium channel 2 is a protein that in humans is encoded by the KCNJ6 gene. Mutation in KCNJ6 gene has been proposed to be the cause of Keppen-Lubinsky Syndrome (KPLBS).

<span class="mw-page-title-main">KCNJ4</span> Protein-coding gene in the species Homo sapiens

Potassium inwardly-rectifying channel, subfamily J, member 4, also known as KCNJ4 or Kir2.3, is a human gene.

<span class="mw-page-title-main">KCNJ8</span>

Potassium inwardly-rectifying channel, subfamily J, member 8, also known as KCNJ8, is a human gene encoding the Kir6.1 protein. A mutation in KCNJ8 has been associated with cardiac arrest in the early repolarization syndrome.

<span class="mw-page-title-main">KCNJ5</span> Protein-coding gene in the species Homo sapiens

G protein-activated inward rectifier potassium channel 4(GIRK-4) is a protein that in humans is encoded by the KCNJ5 gene and is a type of G protein-gated ion channel.

<span class="mw-page-title-main">KCNJ12</span> Protein-coding gene in the species Homo sapiens

ATP-sensitive inward rectifier potassium channel 12 is a lipid-gated ion channel that in humans is encoded by the KCNJ12 gene.

<span class="mw-page-title-main">KCNJ3</span> Protein-coding gene in the species Homo sapiens

G protein-activated inward rectifier potassium channel 1(GIRK-1) is encoded in the human by the gene KCNJ3.

<span class="mw-page-title-main">KCNJ15</span> Protein-coding gene in the species Homo sapiens

Potassium inwardly-rectifying channel, subfamily J, member 15, also known as KCNJ15 is a human gene, which encodes the Kir4.2 protein.

<span class="mw-page-title-main">LIN7B</span> Protein-coding gene in humans

Lin-7 homolog B is a protein that in humans is encoded by the LIN7B gene.

<span class="mw-page-title-main">KCNJ16</span> Protein-coding gene in the species Homo sapiens

Potassium inwardly-rectifying channel, subfamily J, member 16 (KCNJ16) is a human gene encoding the Kir5.1 protein.

<span class="mw-page-title-main">KCNJ14</span> Protein-coding gene in the species Homo sapiens

Potassium inwardly-rectifying channel, subfamily J, member 14 (KCNJ14), also known as Kir2.4, is a human gene.

<span class="mw-page-title-main">KCNJ9</span> Protein-coding gene in the species Homo sapiens

G protein-activated inward rectifier potassium channel 3 is a protein that in humans is encoded by the KCNJ9 gene.

<span class="mw-page-title-main">KCNJ13</span> Protein-coding gene in the species Homo sapiens

Potassium inwardly-rectifying channel, subfamily J, member 13 (KCNJ13) is a human gene encoding the Kir7.1 protein.

EAST syndrome is a syndrome consisting of epilepsy, ataxia, sensorineural deafness and salt-wasting renal tubulopathy. The tubulopathy in this condition predispose to hypokalemic metabolic alkalosis with normal blood pressure. Hypomagnesemia may also be present.

<span class="mw-page-title-main">Tertiapin</span>

Tertiapin is a 21-amino acid peptide isolated from venom of the European honey bee. It blocks two different types of potassium channels, inward rectifier potassium channels (Kir) and calcium activated large conductance potassium channels (BK).

The Kir2.6 also known as inward rectifier potassium channel 18 is a protein that in humans is encoded by the KCNJ18 gene. Kir2.6 is an inward-rectifier potassium ion channel.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000177807 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000044708 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Tada Y, Horio Y, Takumi T, Terayama M, Tsuji L, Copeland NG, et al. (November 1997). "Assignment of the glial inwardly rectifying potassium channel KAB-2/Kir4.1 (Kcnj10) gene to the distal region of mouse chromosome 1". Genomics. 45 (3): 629–30. doi:10.1006/geno.1997.4957. PMID   9367690.
  6. Shuck ME, Piser TM, Bock JH, Slightom JL, Lee KS, Bienkowski MJ (January 1997). "Cloning and characterization of two K+ inward rectifier (Kir) 1.1 potassium channel homologs from human kidney (Kir1.2 and Kir1.3)". The Journal of Biological Chemistry. 272 (1): 586–93. doi: 10.1074/jbc.272.1.586 . PMID   8995301.
  7. Kubo Y, Adelman JP, Clapham DE, Jan LY, Karschin A, Kurachi Y, et al. (December 2005). "International Union of Pharmacology. LIV. Nomenclature and molecular relationships of inwardly rectifying potassium channels". Pharmacological Reviews. 57 (4): 509–26. doi:10.1124/pr.57.4.11. PMID   16382105. S2CID   11588492.
  8. 1 2 "Entrez Gene: KCNJ10 potassium inwardly-rectifying channel, subfamily J, member 10".
  9. Bockenhauer D, Feather S, Stanescu HC, Bandulik S, Zdebik AA, Reichold M, et al. (May 2009). "Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations". The New England Journal of Medicine. 360 (19): 1960–70. doi:10.1056/NEJMoa0810276. PMC   3398803 . PMID   19420365.
  10. Nin F, Hibino H, Doi K, Suzuki T, Hisa Y, Kurachi Y (February 2008). "The endocochlear potential depends on two K+ diffusion potentials and an electrical barrier in the stria vascularis of the inner ear". Proceedings of the National Academy of Sciences of the United States of America. 105 (5): 1751–6. Bibcode:2008PNAS..105.1751N. doi: 10.1073/pnas.0711463105 . PMC   2234216 . PMID   18218777.
  11. Kahanovitch U, Cuddapah VA, Pacheco NL, Holt LM, Mulkey DK, Percy AK, Olsen ML (January 2018). "MeCP2 Deficiency Leads to Loss of Glial Kir4.1". eNeuro. 5 (1): ENEURO.0194–17.2018. doi:10.1523/ENEURO.0194-17.2018. PMC   5818552 . PMID   29464197.
  12. Cresto N, Pillet LE, Billuart P, Rouach N (August 2019). "Do Astrocytes Play a Role in Intellectual Disabilities?". Trends in Neurosciences. 42 (8): 518–527. doi: 10.1016/j.tins.2019.05.011 . PMID   31300246. S2CID   195834131.
  13. Kurschner C, Yuzaki M (September 1999). "Neuronal interleukin-16 (NIL-16): a dual function PDZ domain protein". The Journal of Neuroscience. 19 (18): 7770–80. doi:10.1523/JNEUROSCI.19-18-07770.1999. PMC   6782450 . PMID   10479680.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.