KCNB1

Last updated
KCNB1
Identifiers
Aliases KCNB1 , DRK1, KV2.1, h-DRK1, EIEE26, potassium voltage-gated channel subfamily B member 1, DEE26
External IDs OMIM: 600397 MGI: 96666 HomoloGene: 37988 GeneCards: KCNB1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_004975

NM_008420

RefSeq (protein)

NP_004966

NP_032446

Location (UCSC) Chr 20: 49.29 – 49.48 Mb Chr 2: 166.94 – 167.03 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Potassium voltage-gated channel, Shab-related subfamily, member 1, also known as KCNB1 or Kv2.1, is a protein that, in humans, is encoded by the KCNB1 gene. [5] [6] [7]

Contents

Potassium voltage-gated channel subfamily B member one, or simply known as KCNB1, is a delayed rectifier and voltage-gated potassium channel found throughout the body. The channel has a diverse number of functions. However, its main function, as a delayed rectifier, is to propagate current in its respective location. It is commonly expressed in the central nervous system, but may also be found in pulmonary arteries, auditory outer hair cells, stem cells, the retina, and organs such as the heart and pancreas. Modulation of K+ channel activity and expression has been found to be at the crux of many profound pathophysiological disorders in several cell types. [8]

Potassium channels are among the most diverse of all ion channels in eukaryotes. With over 100 genes coding numerous functions, many isoforms of potassium channels are present in the body, but most are divided up into two main groups: inactivating transient channels and non-inactivating delayed rectifiers. Due to the multiple varied forms, potassium delayed rectifier channels open or close in response to a myriad of signals. These include: cell depolarization or hyperpolarization, increases in intracellular calcium concentrations, neurotransmitter binding, or second messenger activity such as G-proteins or kinases. [9]

Structure

The general structure of all potassium channels contain a centered pore composed of alpha subunits with a pore loop expressed by a segment of conserved DNA, T/SxxTxGxG. This general sequence comprises the selectivity of the potassium channel. Depending on the channel, the alpha subunits are constructed in either a homo- or hetero-association, creating a 4-subunit selectivity pore or a 2-subunit pore, each with accessory beta subunits attached intracellularly. Also on the cytoplasmic side are the N- and C- termini, which play a crucial role in activating and deactivating KCNB1 channels. This pore creates the main opening of the channel where potassium ions flow through. [10]

The type of pore domain (number of subunits) determines if the channel has the typical 6 transmembrane (protein) spanning regions, or the less dominant inward rectifier type of only 2 regions. KCNB1 has 6TM labeled S1-S6, each with a tetrameric structure. S5 and S6 create the p-loop, while S4 is the location of the voltage sensor. S4, along with S2 and S3 create the ‘activating’ portions of the delayed rectifier channel. [10] The heteromeric complexes that contain the distinct pore are electrically inactive or non-conducting, but unlike other potassium families, the pore of the KCNB1 group has numerous phosphorylation sites allowing kinase activity. Maturing KCNB1 channels develop these phosphorylation sites within the channel pore, but lack a glycosylation stage in the N-terminus. [11]

Specifically, the KCNB1 delayed rectifier channel conducts a potassium current (K+). This mediates high frequency firing due to the phosphorylation sites located within the channel via kinases and a major calcium influx typical of all neurons. [11]

Kinetics

The kinetics surrounding the activation and deactivation of the KCNB1 channel is relatively unknown, and has been under considerable study. Three of the six transmembrane regions, S2, S3 and S4, contribute to the activation phase of the channel. Upon depolarization, the S4 region, which is positively charged, is moved in response to the subsequent positive charge of the depolarization. As a result of S4 movement, the negatively charged regions of S2 and S3 appear to move as well. [10] The movement of these regions causes an opening of the channel gate within regions of S5 and S6. [12] The intracellular regions of the C and N-terminus also play a crucial role in the activation kinetics of the channel. The two termini interact with one other, as the C-terminus folds around the N-terminus during channel activation. The relative movement between the N- and C- termini greatly aids in producing a conformational change of the channel necessary for channel opening. This interaction between these intracellular regions is believed to be linked with membrane-spanning regions of S1 and S6, and thus aid in the movement of S2, S3, and S4 in opening the channel. [10] [12] Studies on selective mutations knocking out these intracellular termini have been shown to produce larger reductions in speed and probability of channel opening, which indicates their importance in channel activation. [10]

Function

Voltage-gated potassium (Kv) channels represent the most complex class of voltage-gated ion channels from both functional and structural standpoints. [5] Delayed rectifier potassium channels’ most prevalent role is in the falling phase of physiological action potentials. KCNB1 rectifiers are also important in forming the cardiac beat and rate synchronicity that exists within the heart, and the lysis of target molecules in the immune response. These channels can also act as effectors in downstream signaling in G-protein coupled receptor transduction. KCNB1's regulation and propagation of current provides a means for regulatory control over several physiological functions. [9] Their diverse functions include regulating neurotransmitter release, heart rate, insulin secretion, neuronal excitability, epithelial electrolyte transport, smooth muscle contraction, and apoptosis. [5]

Voltage-gated potassium channels are essential in regulating neuronal membrane potential, and in contributing to action potential production and firing. [13] In mammalian CNS neurons, KCNB1 is a predominant delayed rectifier potassium current that regulates neuronal excitability, action potential duration, and tonic spiking. This is necessary when it comes to proper neurotransmitter release, as such release is dependent on membrane potential. In mouse cardiomyocytes, KCNB1 channel is the molecular substrate of major repolarization current IK-slow2. Transgenic mice, expressing a dominant-negative isoform of KCNB1, exhibit markedly prolonged action potentials and demonstrate arrhythmia. [14] KCNB1 also contributes to the function and regulation of smooth muscle fibers. Human studies on pulmonary arteries have shown that normal, physiological inhibition of KCNB1 current aids vasoconstriction of arteries. [15] In human pancreatic ß cells, KCNB1, which mediates potassium efflux, produces a downstroke of the action potential in the cell. [16] In effect, this behavior halts insulin secretion, as its activation decreases the Cav channel-mediated calcium influx that is necessary for insulin exocytosis. KCNB1 has also been found to promote apoptosis within neuronal cells. [8] It is currently believed that KCNB1-induced apoptosis occurs in response to an increase in reactive oxygen species (ROS) that results either from acute oxidation or as a consequence of other cellular stresses. [11]

Regulation

KCNB1 conductance is regulated primarily by oligomerization and phosphorylation. Additional forms of regulation include SUMOylation and acetylation, although the direct effect of these modifications is still under investigation. KCNB1 consensus sites in the N-terminus are not subject to glycosylation. [8]

Phosphorylation

Many proteins undergo phosphorylation, or the addition of phosphate groups to amino acids subunits. Phosphorylation is modulated by kinases, which add phosphate groups, and phosphatases, which remove phosphate groups. In its phosphorylated state, KCNB1 is a poor conductor of current. There are 16 phosphorylation sites that are subject to the activity of kinases, such as cyclin-dependent kinase 5 and AMP-activated protein kinase. These sites are reversibly regulated by phosphatases such as, phosphatase calcineurin. Under periods of high electrical activity, depolarization of the neuron increases calcium influx and triggers phosphatase activity. Under resting conditions, KCNB1 tends to be phosphorylated. Phosphorylation raises the threshold voltage requirement for activation and allows microdomains to bind the channel, preventing KCNB1 from entering the plasma membrane. Microdomains localize KCNB1 in dendrites in cell bodies of hippocampal and cortical neurons. Conductance associated with de-phosphorylation of this channel acts to decrease or end periods high excitability. However, this relationship is not static and is cell dependent. The role of phosphorylation can be affected by reactive oxygen species (ROS) that increase during oxidative stress. ROS act to increase the levels of zinc (Zn2+) and calcium (Ca2+) intracellularly that act with protein kinases to phosphorylate certain sites on KCNB1. This phosphorylation increases the insertion of KCNB1 into the membrane and elevates conductance. Under these conditions the interaction with SNARE protein syntaxin, is enhanced. This surge of KCNB1 current induces activation of a pro-apoptotic pathway, DNA fragmentation, and caspase activation. [8]

Oligomerization

Another proposed mechanism for regulation of apoptosis is oligomerization, or the process of forming multi-protein complexes held together through disulfide bonds. Under oxidative stress, reactive oxygen species (ROS) form and act to regulate KCNB1 through oxidation. Increase in oxygen radicals directly causes formation of KCNB1 oligomers that then accumulate in the plasma membrane and initially decrease current flow. [17] [18] Oligomer activation of c-Src and JNK kinases induces the initial pro-apoptotic signal, which is coupled to KCNB1 current. This further promotes the apoptosis pathway. [19] KCNB1 oligomers have been detected in the post mortem human hippocampus [20]

Blockers

Potassium delayed rectifiers have been implicated in many pharmacological uses in the investigation of biological toxins for drug development. A main component to many of the toxins with negative effects on delayed rectifiers contain cystine inhibitors that are arranged around disulfide bond formations. Many of these toxins originate from species of tarantulas. G. spatulata produces the hanatoxin, which was the first drug to be manipulated to interact with KCNB1 receptors by inhibiting the activation of most potassium voltage-gated channels. Other toxins, such as stromatoxin, heteroscordratoxin, and guangxitoxin, target the selectivity of voltage KCNB1 rectifiers, by either lowering potassium binding affinity or increasing the binding rate of potassium. This can lead to excitotoxicity, or overstimulation of postsynaptic neurons. In nature, the prey of tarantula that are injected with these endogenous toxins induces this excitotoxic effect, producing paralysis for easy capture. Physiologically, these venoms work on KCNB1 rectifier affinity by altering the channels’ voltage sensor, making it more or less sensitive to extracellular potassium concentrations. [21] KCNB1 is also susceptible to tetraethylammonium (TEA) and 4-aminopyridine (4-AP), which completely block all channel activity. TEA also works on calcium-activated potassium channels, furthering its inhibitory effects on neurons and skeletal muscle. Some isoforms of TEA are beneficial for patients with severe Alzheimer's, as blocking KCNB1 channels reduces the amount of neuronal apoptosis, thereby slowing the rate of dementia. [22] This has been attributed to the oxidative properties of the channel by ROS. [9]

Physiological Role in Disease

Neurodegenerative Disease

Oxidative damage is widely considered to play a role in neurodegenerative disorders, including Alzheimer's disease. Such oxidative stress alters the redox sensitivity of the Kv2.1 delayed rectifier, resulting in the modulation of the channel. [8] In vitro studies and studies in animal models show that when KCNB1 is oxidized, it no longer conducts, leading to neurons becoming hyperpolarized and dying; oxidized KCNB1 also clusters in lipid rafts and cannot be internalized, which also leads to apoptosis. These alterations disrupt normal neuronal signaling and increase the likelihood of neurological diseases. Oxidized (oligomerized) KCNB1 channels are present in the hippocampi of old (Braak stage 1-2) and Alzheimer's disease (Braak stage 5) donors of either sexes [20] [23]

As indicated earlier, oxidative and nitrosative injurious stimuli also activate a cell death-inducing cascade that promotes to a zinc and calcium/clamodulin-dependent interaction between syntaxin and Kv2.1, leading to the pro-apoptotic insertion of additional potassium channels into the plasma membrane. These new population of channels aid in the loss of intracellular potassium, creating a permissive environment for protease and nuclease activation in injured neurons. [8] Agents that interfere with the Kv2.1/syntaxin interaction are highly neuroprotective in acute ischemic injury models (stroke) [24]

Increased probability of the channel remaining open can also potentially drive neurodegeneration. Human immunodeficiency virus type-1 (HIV-1)-associated dementia (HAD) may be driven by an overabundance of glutamate, which in turn can trigger increased calcium levels, which in turn can drive calcium-dependent dephosphorylation of KCNB1 channels, which increases probability of channel activation and current conductance. Enhanced KCNB1 current couples cell shrinkage associated with apoptosis and dendritic beading leading to diminished long term potentiation. These neuronal modifications may explain the atrophy of cell layer volume and late stage cell death observed in HAD disease. [25]

Cancer

Exploitation of this channel is advantageous in cancer cell survival as they have the ability to produce heme oxygenase-1, an enzyme with the ability to generate carbon monoxide (CO). Oncogenic cells benefit from producing CO due to the antagonizing effects of the KCNB1 channel. Inhibition of KCNB1 allows cancer proliferation without the apoptotic pathway preventing tumor formation. Although potassium channels are studied as a therapeutic target for cancer, this apoptotic regulation is dependent on cancer type, potassium channel type, expression levels, intracellular localization as well as regulation by pro- or anti-apoptotic factors. [26]

Interactions

KCNB1 has been shown to interact with:

See also

Related Research Articles

<span class="mw-page-title-main">Ion channel</span> Pore-forming membrane protein

Ion channels are pore-forming membrane proteins that allow ions to pass through the channel pore. Their functions include establishing a resting membrane potential, shaping action potentials and other electrical signals by gating the flow of ions across the cell membrane, controlling the flow of ions across secretory and epithelial cells, and regulating cell volume. Ion channels are present in the membranes of all cells. Ion channels are one of the two classes of ionophoric proteins, the other being ion transporters.

<span class="mw-page-title-main">BK channel</span> Family of transport proteins

BK channels (big potassium), are large conductance calcium-activated potassium channels, also known as Maxi-K, slo1, or Kca1.1. BK channels are voltage-gated potassium channels that conduct large amounts of potassium ions (K+) across the cell membrane, hence their name, big potassium. These channels can be activated (opened) by either electrical means, or by increasing Ca2+ concentrations in the cell. BK channels help regulate physiological processes, such as circadian behavioral rhythms and neuronal excitability. BK channels are also involved in many processes in the body, as it is a ubiquitous channel. They have a tetrameric structure that is composed of a transmembrane domain, voltage sensing domain, potassium channel domain, and a cytoplasmic C-terminal domain, with many X-ray structures for reference. Their function is to repolarize the membrane potential by allowing for potassium to flow outward, in response to a depolarization or increase in calcium levels.

<span class="mw-page-title-main">Potassium channel</span> Ion channel that selectively passes K+

Potassium channels are the most widely distributed type of ion channel found in virtually all organisms. They form potassium-selective pores that span cell membranes. Potassium channels are found in most cell types and control a wide variety of cell functions.

<span class="mw-page-title-main">Voltage-gated ion channel</span> Type of ion channel transmembrane protein

Voltage-gated ion channels are a class of transmembrane proteins that form ion channels that are activated by changes in the electrical membrane potential near the channel. The membrane potential alters the conformation of the channel proteins, regulating their opening and closing. Cell membranes are generally impermeable to ions, thus they must diffuse through the membrane through transmembrane protein channels. They have a crucial role in excitable cells such as neuronal and muscle tissues, allowing a rapid and co-ordinated depolarization in response to triggering voltage change. Found along the axon and at the synapse, voltage-gated ion channels directionally propagate electrical signals. Voltage-gated ion-channels are usually ion-specific, and channels specific to sodium (Na+), potassium (K+), calcium (Ca2+), and chloride (Cl) ions have been identified. The opening and closing of the channels are triggered by changing ion concentration, and hence charge gradient, between the sides of the cell membrane.

<span class="mw-page-title-main">KvLQT1</span> Protein-coding gene in the species Homo sapiens

Kv7.1 (KvLQT1) is a potassium channel protein whose primary subunit in humans is encoded by the KCNQ1 gene. Kv7.1 is a voltage and lipid-gated potassium channel present in the cell membranes of cardiac tissue and in inner ear neurons among other tissues. In the cardiac cells, Kv7.1 mediates the IKs (or slow delayed rectifying K+) current that contributes to the repolarization of the cell, terminating the cardiac action potential and thereby the heart's contraction. It is a member of the KCNQ family of potassium channels.

Calcium-activated potassium channels are potassium channels gated by calcium, or that are structurally or phylogenetically related to calcium gated channels. They were first discovered in 1958 by Gardos who saw that calcium levels inside of a cell could affect the permeability of potassium through that cell membrane. Then in 1970, Meech was the first to observe that intracellular calcium could trigger potassium currents. In humans they are divided into three subtypes: large conductance or BK channels, which have very high conductance which range from 100 to 300 pS, intermediate conductance or IK channels, with intermediate conductance ranging from 25 to 100 pS, and small conductance or SK channels with small conductances from 2-25 pS.

<span class="mw-page-title-main">Voltage-gated potassium channel</span> Class of transport proteins

Voltage-gated potassium channels (VGKCs) are transmembrane channels specific for potassium and sensitive to voltage changes in the cell's membrane potential. During action potentials, they play a crucial role in returning the depolarized cell to a resting state.

<span class="mw-page-title-main">KCNE1</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily E member 1 is a protein that in humans is encoded by the KCNE1 gene.

An ATP-sensitive potassium channel is a type of potassium channel that is gated by intracellular nucleotides, ATP and ADP. ATP-sensitive potassium channels are composed of Kir6.x-type subunits and sulfonylurea receptor (SUR) subunits, along with additional components. KATP channels are found in the plasma membrane; however some may also be found on subcellular membranes. These latter classes of KATP channels can be classified as being either sarcolemmal ("sarcKATP"), mitochondrial ("mitoKATP"), or nuclear ("nucKATP").

Stromatoxin is a spider toxin that blocks certain delayed-rectifier and A-type voltage-gated potassium channels.

<span class="mw-page-title-main">Potassium channel tetramerisation domain</span>

K+ channel tetramerisation domain is the N-terminal, cytoplasmic tetramerisation domain (T1) of voltage-gated K+ channels. It defines molecular determinants for subfamily-specific assembly of alpha-subunits into functional tetrameric channels. It is distantly related to the BTB/POZ domain Pfam PF00651.

<span class="mw-page-title-main">KCNA2</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily A member 2 also known as Kv1.2 is a protein that in humans is encoded by the KCNA2 gene.

<span class="mw-page-title-main">KCNMB1</span> Protein-coding gene in the species Homo sapiens

Calcium-activated potassium channel subunit beta-1 is a protein that in humans is encoded by the KCNMB1 gene.

<span class="mw-page-title-main">KCNE3</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel, Isk-related family, member 3 (KCNE3), also known as MinK-related peptide 2(MiRP2) is a protein that in humans is encoded by the KCNE3 gene.

<span class="mw-page-title-main">KCNH1</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily H member 1 is a protein that in humans is encoded by the KCNH1 gene.

<span class="mw-page-title-main">KCNE4</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily E member 4, originally named MinK-related peptide 3 or MiRP3 when it was discovered, is a protein that in humans is encoded by the KCNE4 gene.

<span class="mw-page-title-main">KCNC4</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel, Shaw-related subfamily, member 4 (KCNC4), also known as Kv3.4, is a human gene.

<span class="mw-page-title-main">KCNS3</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily S member 3 (Kv9.3) is a protein that in humans is encoded by the KCNS3 gene. KCNS3 gene belongs to the S subfamily of the potassium channel family. It is highly expressed in pulmonary artery myocytes, placenta, and parvalbumin-containing GABA neurons in brain cortex. In humans, single-nucleotide polymorphisms of the KCNS3 gene are associated with airway hyperresponsiveness, whereas decreased KCNS3 mRNA expression is found in the prefrontal cortex of patients with schizophrenia.

<span class="mw-page-title-main">KCNB2</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily B member 2 is a protein that in humans is encoded by the KCNB2 gene. The protein encoded by this gene is a voltage-gated potassium channel subunit.

Diallyl trisulfide (DATS), also known as Allitridin, is an organosulfur compound with the formula S(SCH2CH=CH2)2. It is one of several produced by the hydrolysis of allicin, including diallyl disulfide and diallyl tetrasulfide, DATS is one of the most potent.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000158445 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000050556 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 3 "Entrez Gene: KCNB1 potassium voltage-gated channel, Shab-related subfamily, member 1".
  6. Melis R, Stauffer D, Zhao X, Zhu XL, Albrecht B, Pongs O, Brothman A, Leppert M (January 1995). "Physical and genetic localization of a Shab subfamily potassium channel (KCNB1) gene to chromosomal region 20q13.2". Genomics. 25 (1): 285–7. doi:10.1016/0888-7543(95)80138-C. PMID   7774931.
  7. Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, Robertson GA, Rudy B, Sanguinetti MC, Stühmer W, Wang X (December 2005). "International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels". Pharmacological Reviews. 57 (4): 473–508. doi:10.1124/pr.57.4.10. PMID   16382104. S2CID   219195192.
  8. 1 2 3 4 5 6 Shah NH, Aizenman E (February 2014). "Voltage-gated potassium channels at the crossroads of neuronal function, ischemic tolerance, and neurodegeneration". Translational Stroke Research. 5 (1): 38–58. doi:10.1007/s12975-013-0297-7. PMC   3946373 . PMID   24323720.
  9. 1 2 3 "Potassium channel, voltage-dependent, beta subunit, KCNAB1 (IPR005400)". InterPro. EMBL-EBI. Retrieved 2017-04-04.
  10. 1 2 3 4 5 Wray D (May 2004). "The roles of intracellular regions in the activation of voltage-dependent potassium channels". European Biophysics Journal. 33 (3): 194–200. doi:10.1007/s00249-003-0363-2. PMID   14608450. S2CID   7990617.
  11. 1 2 3 Patel R, Sesti F (May 2016). "Oxidation of ion channels in the aging nervous system". Brain Research. 1639: 174–85. doi: 10.1016/j.brainres.2016.02.046 . PMID   26947620.
  12. 1 2 Wray D (March 2009). "Intracellular regions of potassium channels: Kv2.1 and heag". European Biophysics Journal. 38 (3): 285–92. doi:10.1007/s00249-008-0354-4. PMID   18607586. S2CID   37362059.
  13. Sesti F (March 2016). "Oxidation of K(+) Channels in Aging and Neurodegeneration". Aging and Disease . 7 (2): 130–5. doi:10.14336/AD.2015.0901. PMC   4809605 . PMID   27114846.
  14. Murakoshi H, Trimmer JS (March 1999). "Identification of the Kv2.1 K+ channel as a major component of the delayed rectifier K+ current in rat hippocampal neurons". The Journal of Neuroscience. 19 (5): 1728–35. doi:10.1523/JNEUROSCI.19-05-01728.1999. PMC   6782166 . PMID   10024359.
  15. Joseph BK, Thakali KM, Moore CL, Rhee SW (April 2013). "Ion channel remodeling in vascular smooth muscle during hypertension: Implications for novel therapeutic approaches". Pharmacological Research. 70 (1): 126–38. doi:10.1016/j.phrs.2013.01.008. PMC   3607210 . PMID   23376354.
  16. Yang SN, Shi Y, Yang G, Li Y, Yu J, Berggren PO (November 2014). "Ionic mechanisms in pancreatic β cell signaling". Cellular and Molecular Life Sciences. 71 (21): 4149–77. doi:10.1007/s00018-014-1680-6. PMID   25052376. S2CID   9830297.
  17. Wu X, Hernandez-Enriquez B, Banas M, Xu R, Sesti F (2013). "Molecular mechanisms underlying the apoptotic effect of KCNB1 K+ channel oxidation". J Biol Chem. 288 (6): 4128–4134. doi: 10.1074/jbc.M112.440933 . PMC   3567663 . PMID   23275378.
  18. Cotella D, Hernandez B, Wu X, Li R, Pan Z, Leveille J, Link CD, Oddo S, Sesti F (2012). "Toxic role of K+ channel oxidation in mammalian brain". J. Neurosci. 32 (12): 4133–4144. doi:10.1523/JNEUROSCI.6153-11.2012. PMC   6621216 . PMID   22442077.
  19. Yu W, Gowda M, Singh S, Sesti F (2017). "Oxidation of KCNB1 potassium channels triggers apoptotic integrin signaling in the brain". Cell Death Dis. 8 (4): e2737. doi:10.1038/cddis.2017.160. PMC   5477583 . PMID   28383553.
  20. 1 2 Wei Y, Shih R, Sesti F (2018). "Oxidation of KCNB1 channels in the human brain and in mouse model of Alzheimer's disease". Cell Death Dis. 9 (820): 820. doi:10.1038/s41419-018-0886-1. PMC   6062629 . PMID   30050035.
  21. Swartz KJ (February 2007). "Tarantula toxins interacting with voltage sensors in potassium channels". Toxicon. 49 (2): 213–30. doi:10.1016/j.toxicon.2006.09.024. PMC   1839852 . PMID   17097703.
  22. Quinn CC, Begenisich T (2017-04-12). "Pharmacology and surface electrostatics of the K channel outer pore vestibule". The Journal of Membrane Biology. 212 (1): 51–60. doi:10.1007/s00232-006-0039-9. PMC   1784061 . PMID   17206516.
  23. Peers C, Boyle JP (February 2015). "Oxidative modulation of K+ channels in the central nervous system in neurodegenerative diseases and aging" (PDF). Antioxidants & Redox Signaling. 22 (6): 505–21. doi:10.1089/ars.2014.6007. PMID   25333910.
  24. Yeh CY, Bulas AM, Moutal A, Saloman JL, Hartnett KA, Anderson CT, Tzounopoulos T, Sun D, Khanna R, Aizenman E (June 2017). "Targeting a potassium channel/syntaxin interaction ameliorates cell death in ischemic stroke". Journal of Neuroscience. 37 (23): 5648–5658. doi:10.1523/JNEUROSCI.3811-16.2017. PMC   5469303 . PMID   28483976.
  25. Keblesh J, Hu D, Xiong H (March 2009). "Voltage-gated potassium channels in human immunodeficiency virus type-1 (HIV-1)-associated neurocognitive disorders". Journal of Neuroimmune Pharmacology. 4 (1): 60–70. doi:10.1007/s11481-008-9106-6. PMC   3974578 . PMID   18459047.
  26. Kondratskyi A, Kondratska K, Skryma R, Prevarskaya N (October 2015). "Ion channels in the regulation of apoptosis". Biochimica et Biophysica Acta (BBA) - Biomembranes. Membrane Channels and Transporters in Cancers. 1848 (10 Pt B): 2532–46. doi: 10.1016/j.bbamem.2014.10.030 . PMID   25450339.
  27. Ottschytsch N, Raes A, Van Hoorick D, Snyders DJ (June 2002). "Obligatory heterotetramerization of three previously uncharacterized Kv channel alpha-subunits identified in the human genome". Proceedings of the National Academy of Sciences of the United States of America. 99 (12): 7986–91. Bibcode:2002PNAS...99.7986O. doi: 10.1073/pnas.122617999 . PMC   123007 . PMID   12060745.
  28. Peretz A, Gil-Henn H, Sobko A, Shinder V, Attali B, Elson A (August 2000). "Hypomyelination and increased activity of voltage-gated K(+) channels in mice lacking protein tyrosine phosphatase epsilon". The EMBO Journal. 19 (15): 4036–45. doi:10.1093/emboj/19.15.4036. PMC   306594 . PMID   10921884.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.