CACNA2D1

Last updated
CACNA2D1
Identifiers
Aliases CACNA2D1 , CACNA2, CACNL2A, CCHL2A, LINC01112, lncRNA-N3, calcium voltage-gated channel auxiliary subunit alpha2delta 1
External IDs OMIM: 114204 MGI: 88295 HomoloGene: 579 GeneCards: CACNA2D1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000722
NM_001302890
NM_001366867

NM_001110843
NM_001110844
NM_001110845
NM_001110846
NM_009784

Contents

RefSeq (protein)

NP_000713
NP_001289819
NP_001353796

NP_001104313
NP_001104314
NP_001104315
NP_001104316
NP_033914

Location (UCSC) Chr 7: 81.95 – 82.44 Mb Chr 5: 16.14 – 16.58 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Voltage-dependent calcium channel subunit alpha-2/delta-1 is a protein that in humans is encoded by the CACNA2D1 gene. [5] [6]

This gene encodes a member of the alpha-2/delta subunit family, a protein in the voltage-dependent calcium channel complex. Calcium channels mediate the influx of calcium ions into the cell upon membrane polarization and consist of a complex of alpha-1, alpha-2/delta, beta, and gamma subunits in a 1:1:1:1 ratio. Research on a highly similar protein in rabbit suggests the protein described in this record is cleaved into alpha-2 and delta subunits. Alternate transcriptional splice variants of this gene have been observed, but have not been thoroughly characterized. [6]

Gabapentinoids

alpha2/delta proteins are believed to be the molecular target of the gabapentinoids gabapentin and pregabalin, which are used to treat epilepsy and neuropathic pain. [7] [8] [9]

See also

Related Research Articles

Ca<sub>v</sub>1.2 Protein-coding gene in the species Homo sapiens

Calcium channel, voltage-dependent, L type, alpha 1C subunit is a protein that in humans is encoded by the CACNA1C gene. Cav1.2 is a subunit of L-type voltage-dependent calcium channel.

Ca<sub>v</sub>2.1 Protein-coding gene in the species Homo sapiens

Cav2.1, also called the P/Q voltage-dependent calcium channel, is a calcium channel found mainly in the brain. Specifically, it is found on the presynaptic terminals of neurons in the brain and cerebellum. Cav2.1 plays an important role in controlling the release of neurotransmitters between neurons. It is composed of multiple subunits, including alpha-1, beta, alpha-2/delta, and gamma subunits. The alpha-1 subunit is the pore-forming subunit, meaning that the calcium ions flow through it. Different kinds of calcium channels have different isoforms (versions) of the alpha-1 subunit. Cav2.1 has the alpha-1A subunit, which is encoded by the CACNA1A gene. Mutations in CACNA1A have been associated with various neurologic disorders, including familial hemiplegic migraine, episodic ataxia type 2, and spinocerebellar ataxia type 6.

Ca<sub>v</sub>1.4 Protein-coding gene in the species Homo sapiens

Cav1.4 also known as the calcium channel, voltage-dependent, L type, alpha 1F subunit (CACNA1F), is a human gene.

Ca<sub>v</sub>1.1 Mammalian protein found in Homo sapiens

Cav1.1 also known as the calcium channel, voltage-dependent, L type, alpha 1S subunit, (CACNA1S), is a protein which in humans is encoded by the CACNA1S gene. It is also known as CACNL1A3 and the dihydropyridine receptor.

<span class="mw-page-title-main">CACNB2</span> Protein-coding gene in the species Homo sapiens

Voltage-dependent L-type calcium channel subunit beta-2 is a protein that in humans is encoded by the CACNB2 gene.

<span class="mw-page-title-main">CACNB4</span> Protein-coding gene in the species Homo sapiens

Voltage-dependent L-type calcium channel subunit beta-4 is a protein that in humans is encoded by the CACNB4 gene.

<span class="mw-page-title-main">CACNB1</span> Protein-coding gene in the species Homo sapiens

Voltage-dependent L-type calcium channel subunit beta-1 is a protein that in humans is encoded by the CACNB1 gene.

<span class="mw-page-title-main">CACNB3</span> Protein-coding gene in the species Homo sapiens

Voltage-dependent L-type calcium channel subunit beta-3 is a protein that in humans is encoded by the CACNB3 gene.

<span class="mw-page-title-main">KCNMB2</span> Protein-coding gene in the species Homo sapiens

Calcium-activated potassium channel subunit beta-2 is a protein that in humans is encoded by the KCNMB2 gene.

<span class="mw-page-title-main">CACNG3</span> Protein-coding gene in the species Homo sapiens

Voltage-dependent calcium channel gamma-3 subunit is a protein that in humans is encoded by the CACNG3 gene.

<span class="mw-page-title-main">KCNMB4</span>

Calcium-activated potassium channel subunit beta-4 is a protein that in humans is encoded by the KCNMB4 gene.

<span class="mw-page-title-main">Calcium channel, voltage-dependent, T type, alpha 1H subunit</span> Protein-coding gene in the species Homo sapiens

Calcium channel, voltage-dependent, T type, alpha 1H subunit, also known as CACNA1H, is a protein which in humans is encoded by the CACNA1H gene.

<span class="mw-page-title-main">CACNG4</span> Protein-coding gene in the species Homo sapiens

Voltage-dependent calcium channel gamma-4 subunit is a protein that in humans is encoded by the CACNG4 gene.

<span class="mw-page-title-main">CACNG1</span> Protein-coding gene in the species Homo sapiens

Voltage-dependent calcium channel gamma-1 subunit is a protein that in humans is encoded by the CACNG1 gene.

<span class="mw-page-title-main">CACNA2D2</span> Protein-coding gene in the species Homo sapiens

Voltage-dependent calcium channel subunit alpha2delta-2 is a protein that in humans is encoded by the CACNA2D2 gene.

<span class="mw-page-title-main">CACNA1I</span> Protein-coding gene in the species Homo sapiens

Calcium channel, voltage-dependent, T type, alpha 1I subunit, also known as CACNA1I or Cav3.3 is a protein which in humans is encoded by the CACNA1I gene.

<span class="mw-page-title-main">CACNA1B</span> Protein-coding gene in the species Homo sapiens

The voltage-dependent N-type calcium channel subunit alpha-1B is a protein that in humans is encoded by the CACNA1B gene. The α1B protein, together with β and α2δ subunits forms N-type calcium channel PMID 26386135. It is a R-type calcium channel.

<span class="mw-page-title-main">CACNA1G</span> Protein-coding gene in the species Homo sapiens

Calcium channel, voltage-dependent, T type, alpha 1G subunit, also known as CACNA1G or Cav3.1 is a protein which in humans is encoded by the CACNA1G gene. It is one of the primary targets in the pharmacology of absence seizure.

<span class="mw-page-title-main">CACNA2D4</span>

Calcium channel, voltage-dependent, alpha 2/delta subunit 4 is a protein that in humans is encoded by the CACNA2D4 gene.

<span class="mw-page-title-main">CACNA2D3</span> Protein-coding gene in the species Homo sapiens

Calcium channel, voltage-dependent, alpha 2/delta subunit 3 is a protein that in humans is encoded by the CACNA2D3 gene on chromosome 3 .

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000153956 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000040118 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Powers PA, Scherer SW, Tsui LC, Gregg RG, Hogan K (Jun 1994). "Localization of the gene encoding the alpha 2/delta subunit (CACNL2A) of the human skeletal muscle voltage-dependent Ca2+ channel to chromosome 7q21-q22 by somatic cell hybrid analysis". Genomics. 19 (1): 192–3. doi:10.1006/geno.1994.1044. PMID   8188232.
  6. 1 2 "Entrez Gene: CACNA2D1 calcium channel, voltage-dependent, alpha 2/delta subunit 1".
  7. Rogawski MA, Bazil CW (July 2008). "New molecular targets for antiepileptic drugs: alpha(2)delta, SV2A, and K(v)7/KCNQ/M potassium channels". Curr Neurol Neurosci Rep. 8 (4): 345–52. doi:10.1007/s11910-008-0053-7. PMC   2587091 . PMID   18590620.
  8. Patel, Ryan; Dickenson, Anthony H. (2016-04-01). "Mechanisms of the gabapentinoids andα2δ-1 calcium channel subunit in neuropathic pain". Pharmacology Research & Perspectives. 4 (2): e00205. doi:10.1002/prp2.205. ISSN   2052-1707. PMC   4804325 . PMID   27069626.
  9. Patel, Ryan; Bauer, Claudia S.; Nieto-Rostro, Manuela; Margas, Wojciech; Ferron, Laurent; Chaggar, Kanchan; Crews, Kasumi; Ramirez, Juan D.; Bennett, David L. H. (2013-10-16). "α2δ-1 Gene Deletion Affects Somatosensory Neuron Function and Delays Mechanical Hypersensitivity in Response to Peripheral Nerve Damage". Journal of Neuroscience. 33 (42): 16412–16426. doi:10.1523/jneurosci.1026-13.2013. PMC   3797367 . PMID   24133248.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.