KCNH1

Last updated
KCNH1
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases KCNH1 , EAG, EAG1, Kv10.1, h-eag, TMBTS, ZLS1, hEAG1, potassium voltage-gated channel subfamily H member 1, hEAG
External IDs OMIM: 603305 MGI: 1341721 HomoloGene: 68242 GeneCards: KCNH1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_002238
NM_172362

NM_001038607
NM_010600

RefSeq (protein)

NP_002229
NP_758872

NP_001033696
NP_034730

Location (UCSC) Chr 1: 210.68 – 211.13 Mb Chr 1: 191.87 – 192.19 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Potassium voltage-gated channel subfamily H member 1 is a protein that in humans is encoded by the KCNH1 gene. [5] [6] [7]

Contents

Voltage-gated potassium (Kv) channels represent the most complex class of voltage-gated ion channels from both functional and structural standpoints. Their diverse functions include regulating neurotransmitter release, heart rate, insulin secretion, neuronal excitability, epithelial electrolyte transport, smooth muscle contraction, and cell volume. This gene encodes a member of the potassium channel, voltage-gated, subfamily H. This member is a pore-forming (alpha) subunit of a voltage-gated non-inactivating delayed rectifier potassium channel. It is activated at the onset of myoblast differentiation. The gene is highly expressed in brain and in myoblasts. Overexpression of the gene may confer a growth advantage to cancer cells and favor tumor cell proliferation. Alternative splicing of this gene results in two transcript variants encoding distinct isoforms. [7]

Interactions

KCNH1 has been shown to interact with KCNB1. [8]

Function

The KCNH1 gene encodes a highly conserved voltage-gated potassium channel with predominant expression in the adult central nervous system. [9]

Pathologies

Gabbett and colleagues described Temple–Baraitser syndrome (TBS) in 2008, naming the condition after English clinical geneticists Profs Karen Temple and Michael Baraitser. [10] They then went on to demonstrate that de novo missense mutations in the KCNH1 gene cause deleterious gain of function in the voltage-gated potassium channel, resulting in the multisystem developmental disorder. TBS is categorized by intellectual disabilities, epilepsy, typical facial features, and aplasia of the nails. Simons et al. demonstrated that mutational mosaicism present in the mothers of some probands was responsible for their children's TBS phenotype. This is further evidence of the role that genetic mosaicism plays in the etiology of neurological disorders. [11]

Type 1 Zimmermann–Laband syndrome was later found to be caused by similar mutations in KCNH1. [12] This has led some researchers to believe that type 1 Zimmermann-Laband and Temple-Baraitser syndromes are different manifestations of the same disorder. [13] [14]

See also

Related Research Articles

hERG Mammalian protein found in humans

hERG is a gene that codes for a protein known as Kv11.1, the alpha subunit of a potassium ion channel. This ion channel is best known for its contribution to the electrical activity of the heart: the hERG channel mediates the repolarizing IKr current in the cardiac action potential, which helps coordinate the heart's beating.

<span class="mw-page-title-main">Channelopathy</span> Diseases caused by disturbed function of ion channel subunits or the proteins that regulate them

Channelopathies are a group of diseases caused by the dysfunction of ion channel subunits or their interacting proteins. These diseases can be inherited or acquired by other disorders, drugs, or toxins. Mutations in genes encoding ion channels, which impair channel function, are the most common cause of channelopathies. There are more than 400 genes that encode ion channels, found in all human cell types and are involved in almost all physiological processes. Each type of channel is a multimeric complex of subunits encoded by a number of genes. Depending where the mutation occurs it may affect the gating, conductance, ion selectivity, or signal transduction of the channel.

<span class="mw-page-title-main">Kv1.1</span>

Potassium voltage-gated channel subfamily A member 1 also known as Kv1.1 is a shaker related voltage-gated potassium channel that in humans is encoded by the KCNA1 gene. Isaacs syndrome is a result of an autoimmune reaction against the Kv1.1 ion channel.

<span class="mw-page-title-main">KCNE1</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily E member 1 is a protein that in humans is encoded by the KCNE1 gene.

<span class="mw-page-title-main">Zimmermann–Laband syndrome</span> Medical condition

Zimmermann–Laband syndrome (ZLS) is two different conditions that share similar clinical features. It is an extremely rare, autosomal dominant congenital disorder.

<span class="mw-page-title-main">KCND3</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily D member 3 also known as Kv4.3 is a protein that in humans is encoded by the KCND3 gene. It contributes to the cardiac transient outward potassium current (Ito1), the main contributing current to the repolarizing phase 1 of the cardiac action potential.

<span class="mw-page-title-main">KCNQ4</span> Mammalian protein found in Homo sapiens

Potassium voltage-gated channel subfamily KQT member 4, also known as voltage-gated potassium channel subunit Kv7.4, is a protein that in humans is encoded by the KCNQ4 gene.

<span class="mw-page-title-main">KCNH5</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel, subfamily H (eag-related), member 5, also known as KCNH5, is a human gene encoding the Kv10.2 protein.

<span class="mw-page-title-main">KCNC1</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily C member 1 is a protein that in humans is encoded by the KCNC1 gene.

<span class="mw-page-title-main">KCNG1</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily G member 1 is a protein that in humans is encoded by the KCNG1 gene.

<span class="mw-page-title-main">KCNG3</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily G member 3 is a protein that in humans is encoded by the KCNG3 gene. The protein encoded by this gene is a voltage-gated potassium channel subunit.

<span class="mw-page-title-main">KCNG4</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily G member 4 is a protein that in humans is encoded by the KCNG4 gene. The protein encoded by this gene is a voltage-gated potassium channel subunit.

<span class="mw-page-title-main">KCNV2</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily V member 2 is a protein that in humans is encoded by the KCNV2 gene. The protein encoded by this gene is a voltage-gated potassium channel subunit.

<span class="mw-page-title-main">KCNS2</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily S member 2 is a protein that in humans is encoded by the KCNS2 gene. The protein encoded by this gene is a voltage-gated potassium channel subunit.

<span class="mw-page-title-main">KCNH6</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily H member 6 is a protein that in humans is encoded by the KCNH6 gene. The protein encoded by this gene is a voltage-gated potassium channel subunit.

<span class="mw-page-title-main">KCNH7</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily H member 7 is a protein that in humans is encoded by the KCNH7 gene. The protein encoded by this gene is a voltage-gated potassium channel subunit.

<span class="mw-page-title-main">KCNH3</span> Protein-coding gene in humans

Potassium voltage-gated channel subfamily H member 3 is a protein that in humans is encoded by the KCNH3 gene. The protein encoded by this gene is a voltage-gated potassium channel subunit.

<span class="mw-page-title-main">KCNH4</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily H member 4 is a protein that in humans is encoded by the KCNH4 gene. The protein encoded by this gene is a voltage-gated potassium channel subunit.

<span class="mw-page-title-main">Michael T. Gabbett</span>

Michael Terrence Gabbett is an Australian clinical geneticist and academic. He is an Associate Professor at both Queensland University of Technology and Griffith University. Gabbett is known for contributing to discovering the genetic basis of semi-identical (sesquizygotic) twins and defining the clinical features and molecular cause of Temple-Baraitser syndrome.

<span class="mw-page-title-main">Temple–Baraitser syndrome</span> Medical condition

Temple–Baraitser syndrome (TBS) is a very rare autosomal dominant genetic disorder, characterised by intellectual disability, epilepsy, small or absent nail of the thumbs and great toes, and distinct craniofacial features.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000143473 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000058248 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Occhiodoro T, Bernheim L, Liu JH, Bijlenga P, Sinnreich M, Bader CR, Fischer-Lougheed J (August 1998). "Cloning of a human ether-a-go-go potassium channel expressed in myoblasts at the onset of fusion". FEBS Letters. 434 (1–2): 177–182. doi: 10.1016/S0014-5793(98)00973-9 . PMID   9738473.
  6. Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, et al. (December 2005). "International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels". Pharmacological Reviews. 57 (4): 473–508. doi:10.1124/pr.57.4.10. PMID   16382104. S2CID   219195192.
  7. 1 2 "Entrez Gene: KCNH1 potassium voltage-gated channel, subfamily H (eag-related), member 1".
  8. Ottschytsch N, Raes A, Van Hoorick D, Snyders DJ (June 2002). "Obligatory heterotetramerization of three previously uncharacterized Kv channel alpha-subunits identified in the human genome". Proceedings of the National Academy of Sciences of the United States of America. 99 (12): 7986–7991. Bibcode:2002PNAS...99.7986O. doi: 10.1073/pnas.122617999 . PMC   123007 . PMID   12060745.
  9. "603305 - Potassium channel, voltage-gated; subfamily H, member 1; KCNH1". Online Mendelian Inheritance in Man (OMIM).
  10. Gabbett MT, Clark RC, McGaughran JM (February 2008). "A second case of severe mental retardation and absent nails of hallux and pollex (Temple-Baraitser syndrome)". American Journal of Medical Genetics. Part A. 146A (4): 450–452. doi:10.1002/ajmg.a.32129. PMID   18203178. S2CID   2532859.
  11. Simons C, Rash LD, Crawford J, Ma L, Cristofori-Armstrong B, Miller D, et al. (January 2015). "Mutations in the voltage-gated potassium channel gene KCNH1 cause Temple-Baraitser syndrome and epilepsy". Nature Genetics. 47 (1): 73–77. doi:10.1038/ng.3153. PMID   25420144. S2CID   52799681.
  12. Kortüm F, Caputo V, Bauer CK, Stella L, Ciolfi A, Alawi M, et al. (June 2015). "Mutations in KCNH1 and ATP6V1B2 cause Zimmermann-Laband syndrome". Nature Genetics. 47 (6): 661–667. doi:10.1038/ng.3282. hdl: 2108/118197 . PMID   25915598. S2CID   12060592.
  13. Mégarbané A, Al-Ali R, Choucair N, Lek M, Wang E, Ladjimi M, et al. (June 2016). "Temple-Baraitser Syndrome and Zimmermann-Laband Syndrome: one clinical entity?". BMC Medical Genetics. 17 (1): 42. doi: 10.1186/s12881-016-0304-4 . PMC   4901505 . PMID   27282200.
  14. Bramswig NC, Ockeloen CW, Czeschik JC, van Essen AJ, Pfundt R, Smeitink J, et al. (October 2015). "'Splitting versus lumping': Temple-Baraitser and Zimmermann-Laband Syndromes". Human Genetics. 134 (10): 1089–1097. doi:10.1007/s00439-015-1590-1. PMID   26264464. S2CID   14238362.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.