TRPM5 | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | TRPM5 , LTRPC5, MTR1, transient receptor potential cation channel subfamily M member 5 | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | OMIM: 604600 MGI: 1861718 HomoloGene: 22818 GeneCards: TRPM5 | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
Transient receptor potential cation channel subfamily M member 5 (TRPM5), also known as long transient receptor potential channel 5 is a protein that in humans is encoded by the TRPM5 gene. [5] [6]
TRPM5 is a calcium-activated non-selective cation channel that induces depolarization upon increases in intracellular calcium, it is a signal mediator in chemosensory cells. Channel activity is initiated by a rise in the intracellular calcium, and the channel permeates monovalent cations as K+ and Na+. TRPM5 is a key component of taste transduction in the gustatory system of bitter, sweet and umami tastes being activated by high levels of intracellular calcium. It has also been targeted as a possible contributor to fat taste signaling. [7] [8] The calcium dependent opening of TRPM5 produces a depolarizing generator potential which leads to an action potential. [9]
TRPM5 is expressed in pancreatic β-cells [10] where it is involved in the signaling mechanism for insulin secretion. The potentiation of TRPM5 in the β-cells leads to increased insulin secretion and protects against the development of type 2 diabetes in mice. [11] Further expression of TRPM5 can be found in tuft cells, [12] solitary chemosensory cells and several other cell types in the body that have a sensory role.
The role of TRPM5 in the pancreatic β-cell makes it a target for the development of novel antidiabetic therapies. [13]
Selective blocking agents of TRPM5 ion channels can be used to identify TRPM5 currents in primary cells. Most identified compounds show, however, a poor selectivity between TRPM4 and TRPM5 or other ion channels.
Transient receptor potential channels are a group of ion channels located mostly on the plasma membrane of numerous animal cell types. Most of these are grouped into two broad groups: Group 1 includes TRPC, TRPV, TRPVL, TRPM, TRPS, TRPN, and TRPA. Group 2 consists of TRPP and TRPML. Other less-well categorized TRP channels exist, including yeast channels and a number of Group 1 and Group 2 channels present in non-animals. Many of these channels mediate a variety of sensations such as pain, temperature, different kinds of tastes, pressure, and vision. In the body, some TRP channels are thought to behave like microscopic thermometers and used in animals to sense hot or cold. Some TRP channels are activated by molecules found in spices like garlic (allicin), chili pepper (capsaicin), wasabi ; others are activated by menthol, camphor, peppermint, and cooling agents; yet others are activated by molecules found in cannabis or stevia. Some act as sensors of osmotic pressure, volume, stretch, and vibration. Most of the channels are activated or inhibited by signaling lipids and contribute to a family of lipid-gated ion channels.
TRPV6 is a membrane calcium (Ca2+) channel protein which is particularly involved in the first step in Ca2+absorption in the intestine.
TRPC is a family of transient receptor potential cation channels in animals.
TRPV is a family of transient receptor potential cation channels in animals. All TRPVs are highly calcium selective.
TRPM is a family of transient receptor potential ion channels (M standing for wikt:melastatin). Functional TRPM channels are believed to form tetramers. The TRPM family consists of eight different channels, TRPM1–TRPM8.
TRPP is a family of transient receptor potential ion channels which when mutated can cause polycystic kidney disease.
Transient receptor potential cation channel, subfamily C, member 6, also known as TRPC6, is a human gene encoding a protein of the same name. TRPC6 is a transient receptor potential channel of the classical TRPC subfamily. It has been associated with depression and anxiety, as well as with focal segmental glomerulosclerosis (FSGS).
Short transient receptor potential channel 3 (TrpC3) also known as transient receptor protein 3 (TRP-3) is a protein that in humans is encoded by the TRPC3 gene. The TRPC3/6/7 subfamily are implicated in the regulation of vascular tone, cell growth, proliferation and pathological hypertrophy. These are diacylglycerol-sensitive cation channels known to regulate intracellular calcium via activation of the phospholipase C (PLC) pathway and/or by sensing Ca2+ store depletion. Together, their role in calcium homeostasis has made them potential therapeutic targets for a variety of central and peripheral pathologies.
The short transient receptor potential channel 4 (TrpC4), also known as Trp-related protein 4, is a protein that in humans is encoded by the TRPC4 gene.
Short transient receptor potential channel 5 (TrpC5) also known as transient receptor protein 5 (TRP-5) is a protein that in humans is encoded by the TRPC5 gene. TrpC5 is subtype of the TRPC family of mammalian transient receptor potential ion channels.
Transient receptor potential cation channel, subfamily M, member 2, also known as TRPM2, is a protein that in humans is encoded by the TRPM2 gene.
Transient receptor potential cation channel, subfamily A, member 1, also known as transient receptor potential ankyrin 1, TRPA1, or The Wasabi Receptor, is a protein that in humans is encoded by the TRPA1 gene.
Transient receptor potential cation channel subfamily M member 4 (hTRPM4), also known as melastatin-4, is a protein that in humans is encoded by the TRPM4 gene.
Transient receptor potential cation channel subfamily V member 4 is an ion channel protein that in humans is encoded by the TRPV4 gene.
Transient receptor potential cation channel subfamily M (melastatin) member 8 (TRPM8), also known as the cold and menthol receptor 1 (CMR1), is a protein that in humans is encoded by the TRPM8 gene. The TRPM8 channel is the primary molecular transducer of cold somatosensation in humans. In addition, mints can desensitize a region through the activation of TRPM8 receptors.
Transient receptor potential cation channel subfamily M member 3 is a protein that in humans is encoded by the TRPM3 gene.
Transient receptor potential cation channel, subfamily M, member 7, also known as TRPM7, is a human gene encoding a protein of the same name.
The transient receptor potential Ca2+ channel (TRP-CC) family (TC# 1.A.4) is a member of the voltage-gated ion channel (VIC) superfamily and consists of cation channels conserved from worms to humans. The TRP-CC family also consists of seven subfamilies (TRPC, TRPV, TRPM, TRPN, TRPA, TRPP, and TRPML) based on their amino acid sequence homology:
CIM-0216 is a chemical compound which acts as a potent and selective activator of the TRPM3 calcium channel. It produces nociception and inflammation and is used to study the function of the TRPM3 receptor in these processes.
Ononetin is a natural product from the deoxybenzoin group, which is found in the Russian traditional medicine plant Ononis spinosa. It acts as an inhibitor of the transient receptor potential ion channel TRPM3 and has analgesic effects in animal studies, as well as being used for research into the role of TRPM3 in the immune system dysfunction associated with chronic fatigue syndrome.
{{cite book}}
: |journal=
ignored (help)This article incorporates text from the United States National Library of Medicine, which is in the public domain.