Intercellular communication (ICC) refers to the various ways and structures that biological cells use to communicate with each other directly or through their environment. Different types of cells use different proteins and mechanisms to communicate with one another using extracellular signalling molecules. [2] Components of each type of intercellular communication may be involved in more than one type of communication [2] making attempts at clearly separating the types of communication listed somewhat futile. The sections are loosely compiled from various areas of research rather than by a systematic attempt of classification by functional or structural characteristics.
Single celled organisms will sense their environment to seek food and may send out signals to other cells to behave symbiotically or reproduce. A classic example of this is the slime mold. The slime mold shows how intercellular communication with a small molecule e.g. cyclic AMP allows a simple organism to form from an organized aggregation of single cells. [3] Research into cell signalling investigated a receptor specific to each signal or multiple receptors potentially being activated by a single signal. [4] It is not only the presence or absence of a signal that is important but also the strength. Using a chemical gradient to coordinate cell growth and differentiation continues to be important as multicellular animals and plants become more complex. This type of intercellular communication within an organism is commonly referred to as cell signalling. This type of intercellular communication is typified by a small signalling molecule diffusing through the spaces around cells, [5] often relying on a diffusion gradient forming part of the signalling response.
Complex organisms may have molecules to hold the cells together which can also be involved in intercellular communication. Some binding molecules are termed the extracellular matrix and may involve longer molecules like cellulose for the cell wall in plants or collagen in animals. When the membranes of two cells are close they may form special types of cell junction which come in five broad types, adherens, desmosomes, gap, tight and tricellular junctions. Adherens, desmosomes, tight and tricellular junctions, serve structural roles. The structures they form also form parts of complex protein signaling pathways. [6] In one respect tight junctions play a generic role in cell signaling in that they may form a tight zip around cells forming an barrier to stop even small unwanted signalling molecules getting between cells. [7] Otherwise signalling molecules may spread to another group of cells which are not requiring the signal or allow signalling molecules escape to quickly from where they are needed.
Pannexins, connexins, and innexins are transmembrane proteins that are all named after the Latin term nexus, meaning to connect. They are grouped as they all share a similar structure of 4 transmembrane domains crossing the cell membrane in a similar way but they do not all share enough sequence homology to allow them to be considered directly related. [2] [8] Earlier investigations involving the connexins demonstrated cells forming a direct connection with each other using groups of connexins but not connections with the cell exterior. As such they were not considered to participate in the extracellular cell signalling at the time. Later studies made it apparent connexins could connect directly to the cell exterior meaning they are a conduit for the release an uptake of signalling molecules from the environment external to the cell. [9] Furthermore, pannexins appear to do this to such an extent they may rarely if ever participate in direct cell to cell coupling. [10] As indicated on the pannexin/innexin/connexin tree illustrated many animals do not appear to have pannexins/innexins/connexins, perhaps indicating there may be other similar proteins still to be discovered that serve to aid intercellular communication in these animals. [2]
In fungi, pores crossing their cell walls that separate cellular compartments act as an ICC for the movement of molecules to their neighboring compartments. [11]
Most red algae may have pores in the cell septum that partitions a cell/filament called a pit connection. As a leftover of the mitotic division it may be plugged up by the cell. There are also similar connections between neighboring cells/filaments that may allowing sharing of nutrients. [12] Cells of a different species may initiate and form a pit connection with the host algae. [13]
Plant cells usually have thick cell walls which need to be crossed if neighboring cells are to communicate directly. Plasmodesmata form a pipe through the cell wall forming an ICC. The pipe has another smaller membranous pipe concentric to it connecting the endoplasmic reticulum of the two cells via a tube called the desmotubule. The larger pipe also contains cytoskeletal and other elements. It is presumed viruses use plasmodesmata as a route through the cell walls to spread through the plant. [14]
Gap junctions can form intercellular links, effectively a tiny direct regulated "pipe" called a connexon pair between the cytoplasms of the two cells that form the junction. 6 connexins make a connexon, 2 connexons make a connexon pair so 12 connexin proteins build each tiny ICC. This ICC allows two cells to communicate directly while being sealed from the outside world. [15] Cells may form one or thousands of these tiny ICCs between them and their other neighbors, potentially forming large networks of directly linked cells. The connexon pairs form ICCs that can transport water, many other molecules up to around 1000 atoms in size [16] and can be very rapidly signaled to turn on and off as required. These ICCs are also communicating electrical signals that can be rapidly turned on and off. To add to their versatility there are a range of these ICC types due to their being over 20 different connexins with different properties that can combine with each other in a variety of ways. The variety of potential signaling combinations that results is enormous. A much studied example of gap junctions electrical signalling abilities is in the electrical synapses found on nerves. [17] [18] [19] In heart muscle gap junctions function to coordinate the beating of the heart. Adding even further to their versatility gap junctions can also function to form a direct connection to the exterior of a cell paralleling the functioning of the protein cousin the pannexins which are explained elsewhere.
Intercellular bridges are larger than gap junction ICCs so are able to allow the movement of not only small signaling molecules but also large DNA molecules or even whole cell organelles. They are maintained between two cells allowing them to exchange cytoplasmic contents and are frequently observed when cells need intimate communication such as when they are reproducing. They are found in Prokaryotes for exchanging DNA, small organisms such as Pinnularia, Valonia ventricosa, Volvox, C. elegans [20] and mitosis generally (Cytokinesis), [21] Blepharisma for sexual reproduction and during Meiosis including Spermatocytogenesis to synchronise development of germ cells and oogenesis in larger organisms. Bridges have shown to assist in cell migration as shown in the adjacent picture. [22] Cytoplasmic bridges can also be used to attack another cell as in the case of Vampirococcus.
Cells that require a more permanent, extensive cytoplasmic linkage may fuse with each other to varying degrees in many cases forming one large cell or syncytium. This happens extensively during the development of skeletal muscle forming large muscle fibers. Later it was confirmed in other tissues such as the eye lens. Though both involving cell fibers, in the case of the eye lens the cell fusion is more limited in scope resulting in a less extensively fused stratified syncytium. [23]
Lipid membrane bound vesicles of a large range of sizes are found inside and outside of cells, containing a huge variety of things ranging from food to invading organisms, water to signaling molecules. Using an electrical nerve impulse from a neuron of a neuromuscular junction to stimulate a muscle to contract is an example of very small [24] (about 0.05μm) vesicles being directly involved in regulating intercellular communication. The neuron produces thousands of tiny vesicles, each containing thousands of signalling molecules. One vesicle is released close to the muscle every second or so when resting. When activated by a nerve impulse more than 100 vesicles will be released at once, hundreds of thousands of signalling molecules, causing a significant contraction of the muscle fiber. All this happens in a small fraction of a second.
Generally small vesicles used to transport signalling molecules released from the cell are termed exosomes [25] [26] [27] or simply extracellular vesicles (EV), [28] and in addition to their importance to the organism they are also important for biosensors. [24] Extracellular vesicles can be released from malignant cancer cells. These extracellular vesicles have been shown to contain gap junction proteins over-expressed in the malignant cells that spread to non-cancerous cells appearing to enhance the spread of the malignancy. [29] Vesicles are also associated with the transport of materials outside of the cell to enable growth and repair of tissues in the extracellular matrix. [30] [31] In situations such as these they may be given special designations such as Matrix Vesicles (MV).
Examples of larger vesicles are in regulatory secretary pathways in endocrine, exocrine tissues, [32] transcytosis [33] [34] and the vesiculo-vacuolar organelle (VVO) in endothelial and perhaps other cell types. [35] Another form of transfer of pieces of membrane around junctions is called trans-endocytosis. [36] Some large intercellular vesicles also appear to stay intact as they transport their contents from one part of a tissue to another and involve gap junction plaques. [37]
When we think of intercellular communication we often use our nervous system as a point of reference. Nerves made up of many cells in vertebrates are typically highly specialized in form and function usually being the most complex in the brain. They ensure rapid precise, directional cell to cell communication over longer distances, for example from your brain to your hand. The nerve cells can be thought of as intermediary's, not so much communicating with each other but rather passing on the messages from one neighboring cell to another. Being "accessory" cells that pass on the message they require an additional space and can consume a lot of energy within an organism. [38]
Simpler organisms such as sponges and placozoans often have less food availability and so less energy to spare. Their nervous systems are less specialized and the cells that are part of it are required to do other functions as well. [39]
When groups of nerve cells form another type of intercellular communication called ephaptic coupling can arise. It was first quantified by Katz in 1940 [40] but it has been difficult to associate any one structure or "ephapse" with this form of communication. There are reductionist attempts to associate particular groups of nerve cells exhibiting ephaptic coupling with particular functions in the brain. [41] As yet there are no studies on the simplest neural systems such as the polar bodies of Ctenophores to see if ephaptic coupling may explain some of their more complex behaviors. [39]
The definition of biological communication is not simple. [42] In the field of cell biology early research was at a cellular to organism level. How the individual cells in one organism could affect those in another was difficult to trace and not of primary concern. If intercellular communication includes one cell transmitting a signal to another to elicit a response, intercellular communication is not restricted to the cells within a single organism. Over short distances interkingdom communication in plants is reported. [11] In-water reproduction often involves vast synchronized release of gametes called spawning. [43] Over large distances cells in one plant will communicate with cells in another plant of the same species and other species by releasing signals into the air such as green leaf volatiles that can, among other things, pre-warn neighbors of herbivores or in the case of ethylene gas the signal triggers ripening in fruits. Intercellular signalling in plants can also happen below ground with the mycorrhizal network which can link large areas of plants via fungal networks allowing the redistribution of environmental resources.
Looking at insect colonies such as bees and ants we have discovered the pheromones [44] released from one organism's cells to another organism's cells can coordinate colonies in a way reminiscent of slime molds. Cell to cell signalling using "pheromones" was also found in more complex animals. As complexity increases so does the effect of signals. "Pheromones" in more complex animals such as vertebrates are now more correctly referred to as "chemosignals" [45] [46] [47] including between species. [48]
The idea that intercellular communication is so similar among cells within an organism as well as cells between different organisms, even prey, is demonstrated by vinnexin. [49] This protein is a modified form of an innexin protein found in a caterpillar. That is, the vinnexin is very similar to the caterpillar's own innexin, and could only have been derived from a non-viral innexin in some way that is unclear. The caterpillar innexin forms normal intercellular connections inside the caterpillar as part of the caterpillar's immune response to an egg implanted by a parasitic wasp. The innexin helps ensure the wasp egg is neutralized, saving the caterpillar from the parasite. So what does the vinnexin do and how? Evolution has led to a virus that communicates with the wasp in a way that evades the wasps antiviral responses, allowing the virus to live and replicate in the wasps ovaries. When the wasp injects its egg into the caterpillar host many virus from the wasp's ovary are also injected. The virus particles do not replicate in the caterpillar cells but rather communicate with the caterpillars genetic machinery to produce vinnexin protein. The vinnexin protein incorporates itself into the caterpillar's cells altering the communication in the caterpillar so the caterpillar goes on living but with an altered immune response. Vinnexins are able to mix with normal innexins to alter communication within the caterpillar and probably do. The altered communication within the caterpillar prevents the caterpillar's defenses rejecting the wasps egg. As a result, the wasp egg hatches, consumes the caterpillar and the virus from the wasp larva's mother, and repeats the cycle. It can be seen the virus and wasp are essential to each other and communicate well with each other to allow the virus to live and replicate, but only in a non-destructive way inside the wasp ovary. The virus is injected into a caterpillar by the wasp, but the virus does not replicate in the caterpillar, the virus only communicates with the caterpillar to modify it in a non-lethal way. The wasp larvae will then slowly eat the caterpillar without being stopped while communicating with the virus again to ensure that the wasp has a place in its ovary for it to again replicate. Connexins/innexins/vinnexins, once thought to only participate in providing a path for signaling molecules or electrical signals have now been shown to act as a signaling molecule itself.
In cell biology, a vesicle is a structure within or outside a cell, consisting of liquid or cytoplasm enclosed by a lipid bilayer. Vesicles form naturally during the processes of secretion (exocytosis), uptake (endocytosis), and the transport of materials within the plasma membrane. Alternatively, they may be prepared artificially, in which case they are called liposomes. If there is only one phospholipid bilayer, the vesicles are called unilamellar liposomes; otherwise they are called multilamellar liposomes. The membrane enclosing the vesicle is also a lamellar phase, similar to that of the plasma membrane, and intracellular vesicles can fuse with the plasma membrane to release their contents outside the cell. Vesicles can also fuse with other organelles within the cell. A vesicle released from the cell is known as an extracellular vesicle.
Exocytosis is a form of active transport and bulk transport in which a cell transports molecules out of the cell. As an active transport mechanism, exocytosis requires the use of energy to transport material. Exocytosis and its counterpart, endocytosis, are used by all cells because most chemical substances important to them are large polar molecules that cannot pass through the hydrophobic portion of the cell membrane by passive means. Exocytosis is the process by which a large amount of molecules are released; thus it is a form of bulk transport. Exocytosis occurs via secretory portals at the cell plasma membrane called porosomes. Porosomes are permanent cup-shaped lipoprotein structure at the cell plasma membrane, where secretory vesicles transiently dock and fuse to release intra-vesicular contents from the cell.
Gap junctions are one of four broad categories of intercellular connections that form between a multitude of animal cell types. First photographed around 1952, it wasn't until 1969 that gap junctions were referred to as "gap junctions". Named after the 2-4 nm gap they bridged between cell membranes, they had been characterised in more detail by 1967.
Cell adhesion is the process by which cells interact and attach to neighbouring cells through specialised molecules of the cell surface. This process can occur either through direct contact between cell surfaces such as cell junctions or indirect interaction, where cells attach to surrounding extracellular matrix, a gel-like structure containing molecules released by cells into spaces between them. Cells adhesion occurs from the interactions between cell-adhesion molecules (CAMs), transmembrane proteins located on the cell surface. Cell adhesion links cells in different ways and can be involved in signal transduction for cells to detect and respond to changes in the surroundings. Other cellular processes regulated by cell adhesion include cell migration and tissue development in multicellular organisms. Alterations in cell adhesion can disrupt important cellular processes and lead to a variety of diseases, including cancer and arthritis. Cell adhesion is also essential for infectious organisms, such as bacteria or viruses, to cause diseases.
In biology, a connexon, also known as a connexin hemichannel, is an assembly of six proteins called connexins that form the pore for a gap junction between the cytoplasm of two adjacent cells. This channel allows for bidirectional flow of ions and signaling molecules. The connexon is the hemichannel supplied by a cell on one side of the junction; two connexons from opposing cells normally come together to form the complete intercellular gap junction channel. In some cells, the hemichannel itself is active as a conduit between the cytoplasm and the extracellular space, allowing the transference of ions and small molecules lower than 1-2 KDa. Little is known about this function of connexons besides the new evidence suggesting their key role in intracellular signaling. In still other cells connexons have been shown to occur in mitochondrial membranes and appear to play a role in heart ischaemia.
Connexins (Cx), or gap junction proteins, are structurally related transmembrane proteins that assemble to form vertebrate gap junctions. An entirely different family of proteins, the innexins, form gap junctions in invertebrates. Each gap junction is composed of two hemichannels, or connexons, which consist of homo- or heterohexameric arrays of connexins, and the connexon in one plasma membrane docks end-to-end with a connexon in the membrane of a closely opposed cell. The hemichannel is made of six connexin subunits, each of which consist of four transmembrane segments. Gap junctions are essential for many physiological processes, such as the coordinated depolarization of cardiac muscle, proper embryonic development, and the conducted response in microvasculature. Connexins also have non-channel dependant functions relating to cytoskeleton and cell migration. For these reasons, mutations in connexin-encoding genes can lead to functional and developmental abnormalities.
Cell junctions or junctional complexes, are a class of cellular structures consisting of multiprotein complexes that provide contact or adhesion between neighboring cells or between a cell and the extracellular matrix in animals. They also maintain the paracellular barrier of epithelia and control paracellular transport. Cell junctions are especially abundant in epithelial tissues. Combined with cell adhesion molecules and extracellular matrix, cell junctions help hold animal cells together.
A polydnavirus (PDV) or more recently, polydnaviriform is a member of the family Polydnaviridae of insect viruses. There are two genera in the family: bracoform and Ichnoviriform. Polydnaviruses form a symbiotic relationship with parasitoid wasps. Ichnoviriforms (IV) occur in Ichneumonid wasps and Bracoviriforms (BV) in Braconid wasps. The larvae of wasps in both of those groups are themselves parasitic on Lepidoptera, and the polydnaviruses are important in circumventing the immune response of their parasitized hosts. Little or no sequence homology exists between BV and IV, suggesting that the two genera have been evolving independently for a long time.
In biology, juxtacrine signalling is a type of cell–cell or cell–extracellular matrix signalling in multicellular organisms that requires close contact. In this type of signalling, a ligand on one surface binds to a receptor on another adjacent surface. Hence, this stands in contrast to releasing a signaling molecule by diffusion into extracellular space, the use of long-range conduits like membrane nanotubes and cytonemes or the use of extracellular vesicles like exosomes or microvesicles. There are three types of juxtacrine signaling:
In biology, cell signaling is the process by which a cell interacts with itself, other cells and the environment. Cell signaling is a fundamental property of all cellular life in prokaryotes and eukaryotes.
Pannexins are a family of vertebrate proteins identified by their homology to the invertebrate innexins. While innexins are responsible for forming gap junctions in invertebrates, the pannexins have been shown to predominantly exist as large transmembrane channels connecting the intracellular and extracellular space, allowing the passage of ions and small molecules between these compartments.
Innexins are transmembrane proteins that form gap junctions in invertebrates. Gap junctions are composed of membrane proteins that form a channel permeable to ions and small molecules connecting the cytoplasm of adjacent cells. Although gap junctions provide similar functions in all multicellular organisms, it was not known what proteins invertebrates used for this purpose until the late 1990s. While the connexin family of gap junction proteins was well-characterized in vertebrates, no homologues were found in non-chordates.
Microvesicles are a type of extracellular vesicle (EV) that are released from the cell membrane. In multicellular organisms, microvesicles and other EVs are found both in tissues and in many types of body fluids. Delimited by a phospholipid bilayer, microvesicles can be as small as the smallest EVs or as large as 1000 nm. They are considered to be larger, on average, than intracellularly-generated EVs known as exosomes. Microvesicles play a role in intercellular communication and can transport molecules such as mRNA, miRNA, and proteins between cells.
Gap junction alpha-1 protein (GJA1), also known as connexin 43 (Cx43), is a protein that in humans is encoded by the GJA1 gene on chromosome 6. As a connexin, GJA1 is a component of gap junctions, which allow for gap junction intercellular communication (GJIC) between cells to regulate cell death, proliferation, and differentiation. As a result of its function, GJA1 is implicated in many biological processes, including muscle contraction, embryonic development, inflammation, and spermatogenesis, as well as diseases, including oculodentodigital dysplasia (ODDD), heart malformations, and cancers.
Gap junction beta-1 protein (GJB1), also known as connexin 32 (Cx32), is a transmembrane protein that in humans is encoded by the GJB1 gene. Gap junction beta-1 protein is a member of the gap junction connexin family of proteins that regulates and controls the transfer of communication signals across cell membranes, primarily in the liver and peripheral nervous system. However, the protein is expressed in multiple organs, including in oligodendrocytes in the central nervous system.
Cell–cell interaction refers to the direct interactions between cell surfaces that play a crucial role in the development and function of multicellular organisms. These interactions allow cells to communicate with each other in response to changes in their microenvironment. This ability to send and receive signals is essential for the survival of the cell. Interactions between cells can be stable such as those made through cell junctions. These junctions are involved in the communication and organization of cells within a particular tissue. Others are transient or temporary such as those between cells of the immune system or the interactions involved in tissue inflammation. These types of intercellular interactions are distinguished from other types such as those between cells and the extracellular matrix. The loss of communication between cells can result in uncontrollable cell growth and cancer.
Gap junction delta-2 protein (GJD2), also known as connexin-36 (Cx36) or gap junction alpha-9 protein (GJA9), is a protein that in humans is encoded by the GJD2 gene.
Pannexin 1 is a protein in humans that is encoded by the PANX1 gene.
Extracellular vesicles (EVs) are lipid bilayer-delimited particles that are naturally released from almost all types of cells but, unlike a cell, cannot replicate. EVs range in diameter from near the size of the smallest physically possible unilamellar liposome to as large as 10 microns or more, although the vast majority of EVs are smaller than 200 nm. EVs can be divided according to size and synthesis route into exosomes, microvesicles and apoptotic bodies. They carry a cargo of proteins, nucleic acids, lipids, metabolites, and even organelles from the parent cell. EVs carry distinct proteo-transcriptomic signatures that are different from their cancer cell of origin. Most cells that have been studied to date are thought to release EVs, including some archaeal, bacterial, fungal, and plant cells that are surrounded by cell walls. A wide variety of EV subtypes have been proposed, defined variously by size, biogenesis pathway, cargo, cellular source, and function, leading to a historically heterogenous nomenclature including terms like exosomes and ectosomes.
Vinnexin is a transmembrane protein whose DNA code is held in a virus genome. When the virus genome is expressed in a cell the vinnexin gene from the virus is made into a functioning protein by the infected cell. The vinnexin protein is then incorporated into the host's cell membranes to alter the way the hosts cells communicate with each other. The altered communication aids the transmission and replication of the virus in complex ways. The communication structure that the vinnexin is involved in is the gap junction and vinnexin forms part of a wider family of proteins that are innexin homologues referred to as pannexins. So far Vinnexins have only been found in Adenovirus and the way they affect the functioning of innexins is being studied in great detail.