Spermatocytogenesis

Last updated
Schematic diagram of Spermatocytogenesis Spermatocytogenesis.png
Schematic diagram of Spermatocytogenesis

Spermatocytogenesis is the male form of gametocytogenesis and involves stem cells dividing to replace themselves and to produce a population of cells destined to become mature sperm.

Contents

The stem cells involved are called spermatogonia and are a specific type of stem cell known as gametogonia.

Three functionally separate spermatogonial cell types are recognised on the basis of the appearance of the nuclei: type A dark spermatogonia (Ad), type A pale spermatogonia (Ap), and type B spermatogonia (B).

Type Ad spermatogonia ("dark")

The population of spermatogonia is maintained by type Ad spermatogonia. These cells do not directly participate in producing sperm, instead serving to maintain the supply of stem cells for spermatogenesis.

Each type Ad spermatogonium divides to produce another type Ad spermatogonium, which can further carry on spermatogenesis, and one type Ap spermatogonium, which differentiates further. [1]

Type Ap spermatogonia ("pale")

Type Ap spermatogonia repeatedly divide mitotically to produce identical cell clones linked by cytoplasmic bridges.

The connections between cells allow development to be synchronised. When repeated division ceases, the cells differentiate into type B spermatogonia. This stage is referred to as the spermatogonial phase.

Type B spermatogonia

Type B spermatogonia undergo mitosis to produce diploid intermediate cells called primary spermatocytes.

Related Research Articles

Gametogenesis Biological process

Gametogenesis is a biological process by which diploid or haploid precursor cells undergo cell division and differentiation to form mature haploid gametes. Depending on the biological life cycle of the organism, gametogenesis occurs by meiotic division of diploid gametocytes into various gametes, or by mitosis. For example, plants produce gametes through mitosis in gametophytes. The gametophytes grow from haploid spores after sporic meiosis. The existence of a multicellular, haploid phase in the life cycle between meiosis and gametogenesis is also referred to as alternation of generations.

Germ cell Gamete-producing cell

A germ cell is any biological cell that gives rise to the gametes of an organism that reproduces sexually. In many animals, the germ cells originate in the primitive streak and migrate via the gut of an embryo to the developing gonads. There, they undergo meiosis, followed by cellular differentiation into mature gametes, either eggs or sperm. Unlike animals, plants do not have germ cells designated in early development. Instead, germ cells can arise from somatic cells in the adult, such as the floral meristem of flowering plants.

Spermatogenesis Production of sperm

Spermatogenesis is the process by which haploid spermatozoa develop from germ cells in the seminiferous tubules of the testis. This process starts with the mitotic division of the stem cells located close to the basement membrane of the tubules. These cells are called spermatogonial stem cells. The mitotic division of these produces two types of cells. Type A cells replenish the stem cells, and type B cells differentiate into primary spermatocytes. The primary spermatocyte divides meiotically into two secondary spermatocytes; each secondary spermatocyte divides into two equal haploid spermatids by Meiosis II. The spermatids are transformed into spermatozoa (sperm) by the process of spermiogenesis. These develop into mature spermatozoa, also known as sperm cells. Thus, the primary spermatocyte gives rise to two cells, the secondary spermatocytes, and the two secondary spermatocytes by their subdivision produce four spermatozoa and four haploid cells.

Sertoli cell

A Sertoli cell is a "nurse" cell of the testicles that is part of a seminiferous tubule and helps in the process of spermatogenesis, the production of sperm.

Spermatocyte Sperm precursor cell that undergoes meiosis

Spermatocytes are a type of male gametocyte in animals. They derive from immature germ cells called spermatogonia. They are found in the testis, in a structure known as the seminiferous tubules. There are two types of spermatocytes, primary and secondary spermatocytes. Primary and secondary spermatocytes are formed through the process of spermatocytogenesis.

Reproductive biology includes both sexual and asexual reproduction.

Spermatogonium Undifferentiated male germ cell

A spermatogonium is an undifferentiated male germ cell. Spermatogonia undergo spermatogenesis to form mature spermatozoa in the seminiferous tubules of the testis.

Sperm Male reproductive cell in anisogamous forms of sexual reproduction

Sperm is the male reproductive cell, or gamete, in anisogamous forms of sexual reproduction. Animals produce motile sperm with a tail known as a flagellum, which are known as spermatozoa, while some red algae and fungi produce non-motile sperm cells, known as spermatia. Flowering plants contain non-motile sperm inside pollen, while some more basal plants like ferns and some gymnosperms have motile sperm.

Gametogonium are stem cells for gametes located within the gonads. They originate from primordial germ cells, which have migrated to the gonads. Male gametogonia which are located within the testes during development and adulthood are called spermatogonium. Female gametogonia, known as oogonium, are found within the ovaries of the developing foetus and were thought to be depleted at or after birth. Spermatogonia and oogonia are classified as sexually differentiated germ cells.

An oogonium is a small diploid cell which, upon maturation, forms a primordial follicle in a female fetus or the female gametangium of certain thallophytes.

The cells that give rise to the gametes are often set aside during embryonic cleavage. During development, these cells will differentiate into primordial germ cells, migrate to the location of the gonad, and form the germline of the animal.

Stem-cell niche refers to a microenvironment, within the specific anatomic location where stem cells are found, which interacts with stem cells to regulate cell fate. The word 'niche' can be in reference to the in vivo or in vitro stem-cell microenvironment. During embryonic development, various niche factors act on embryonic stem cells to alter gene expression, and induce their proliferation or differentiation for the development of the fetus. Within the human body, stem-cell niches maintain adult stem cells in a quiescent state, but after tissue injury, the surrounding micro-environment actively signals to stem cells to promote either self-renewal or differentiation to form new tissues. Several factors are important to regulate stem-cell characteristics within the niche: cell–cell interactions between stem cells, as well as interactions between stem cells and neighbouring differentiated cells, interactions between stem cells and adhesion molecules, extracellular matrix components, the oxygen tension, growth factors, cytokines, and the physicochemical nature of the environment including the pH, ionic strength and metabolites, like ATP, are also important. The stem cells and niche may induce each other during development and reciprocally signal to maintain each other during adulthood.

Female sperm can refer to either:

  1. A sperm which contains an X chromosome, produced in the usual way in the testicles, referring to the occurrence of such a sperm fertilizing an egg and giving birth to a female.
  2. A sperm which artificially contains genetic material from a female.

Sertoli cell-only syndrome is a disorder characterized by male sterility without sexual abnormality. It describes a condition of the testes in which only Sertoli cells line is present in seminiferous tubules.

PAX7 Paired box transcription factor protein

Paired box protein Pax-7 is a protein that in humans is encoded by the PAX7 gene.

Gonocytes are the precursors of spermatogonia that differentiate in the testis from primordial germ cells around week 7 of embryonic development and exist up until the postnatal period, when they become spermatogonia. Despite some uses of the term to refer to the precursors of oogonia, it was generally restricted to male germ cells. Germ cells operate as vehicles of inheritance by transferring genetic and epigenetic information from one generation to the next. Male fertility is centered around continual spermatogonia which is dependent upon a high stem cell population. Thus, the function and quality of a differentiated sperm cell is dependent upon the capacity of its originating spermatogonial stem cell (SSC).

Spermatogonial stem cell Spermatogonium that does not differentiate into a spermatocyte

A spermatogonial stem cell (SSC), also known as a type A spermatogonium, is a spermatogonium that does not differentiate into a spermatocyte, a precursor of sperm cells. Instead, they continue dividing into other spermatogonia or remain dormant to maintain a reserve of spermatogonia. Type B spermatogonia, on the other hand, differentiate into spermatocytes, which in turn undergo meiosis to eventually form mature sperm cells.

Peritubular myoid cell Smooth muscle cell found in testis

A peritubular myoid (PTM) cell is one of the smooth muscle cells which surround the seminiferous tubules in the testis. These cells are present in all mammals but their organization and abundance varies between species. The exact role of PTM cells is still somewhat uncertain and further work into this is needed. However, a number of functions of these cells have been established. They are contractile cells which contain actin filaments and are primarily involved in transport of spermatozoa through the tubules. They provide structural integrity to the tubules through their involvement in laying down the basement membrane. This has also been shown to affect Sertoli cell function and PTM cells also communicate with Sertoli cells through the secretion of growth factors and ECM components. Studies have shown PTM cells to be critical in achieving normal spermatogenesis. Overall, PTM cells have a role in both maintaining the structure of the tubules and regulating spermatogenesis through cellular interaction.

In vitro spermatogenesis is the process of creating male gametes (spermatozoa) outside of the body in a culture system. The process could be useful for fertility preservation, infertility treatment and may further develop the understanding of spermatogenesis at the cellular and molecular level. 

The signaled by retinoic acid 8 (Stra8) gene is activated only upon stimulation by retinoic acid and expresses a cytoplasmic protein in the gonads of male and female vertebrates. This protein functions to initiate the transition between mitosis and meiosis, aiding in spermatogenesis and oogenesis. In females, its signaling begins 12.5 days after conception, is localized in the primordial germ cells of female ovaries, and ushers in the first stage of meiosis. Male expression begins postnatally and continues throughout life, matching the need of spermatogenesis compared to the limited window of oogenesis in females. Sperm of mice that had induced null mutations for Stra8 gene were able to undergo mitotic divisions, and while some sperm were able to transition into the early stages of meiosis I, but could not transition into further sub-stages of meiosis I. Errors in chromosome pairing and chromosome condensation were observed following these failures. In female mice, loss of Stra8 signaling shows failure to enter into meiosis. Both males and females are left infertile if Stra8 signaling is absent.

References

  1. CLERMONT, Yves (March 1966). "Renewal of spermatogonia in man". American Journal of Anatomy. 118 (2): 509–524. doi:10.1002/aja.1001180211. PMID   5917196.

See also