Spermiogenesis

Last updated
The process of spermatogenesis. 1. Primary spermatocyte 2. Secondary spermatocytes 3. Spermatids 4. Sperm Spermatogenesis.svg
The process of spermatogenesis. 1. Primary spermatocyte 2. Secondary spermatocytes 3. Spermatids 4. Sperm

Spermiogenesis is the final stage of spermatogenesis, during which the spermatids develop into mature spermatozoa. At the beginning of the stage, the spermatid is a more or less circular cell containing a nucleus, Golgi apparatus, centriole and mitochondria; by the end of the process, it has radically transformed into an elongated spermatozoon, complete with a head, midpiece, and tail.

Contents

Phases

Complete diagram of a human spermatozoon Complete diagram of a human spermatozoa en.svg
Complete diagram of a human spermatozoon
Schematic of subcellular structures in a murine spermatid being formed showing the formation of the residual body and acrosomal cap. Spermatozoa.svg
Schematic of subcellular structures in a murine spermatid being formed showing the formation of the residual body and acrosomal cap.

The process of spermiogenesis is traditionally divided into four stages: the Golgi phase, the cap phase, formation of the tail, and the maturation stage. [1]

Golgi phase

The spermatids, which up until now have been mostly radially symmetrical, begin to develop polarity. The head forms at one end, where the Golgi apparatus creates enzymes that will become the acrosome. At the other end, it develops a thickened midpiece, where the mitochondria gather and the distal centriole begins to form an axoneme.

Spermatid DNA also undergoes packaging, becoming highly condensed. The DNA is first packaged with specific nuclear basic proteins, which are subsequently replaced with protamines during spermatid elongation. The resultant tightly packed chromatin is transcriptionally inactive.

Cap/acrosome phase

The Golgi apparatus surrounds the condensed nucleus, becoming the acrosomal cap.

Note how the tails of the sperm point inward. This orientation occurs during the acrosomal phase. Gray1150.png
Note how the tails of the sperm point inward. This orientation occurs during the acrosomal phase.

Formation of tail

One of the centrioles of the cell elongates to become the tail of the sperm. A temporary structure called the "manchette" assists in this elongation.

During this phase, the developing spermatozoa orient themselves so that their tails point towards the center of the lumen, away from the epithelium.

Maturation phase

The excess cytoplasm, known as residual body of Regaud, [2] is phagocytosed by surrounding Sertoli cells in the testes.

Spermiation

The mature spermatozoa are released from the protective Sertoli cells into the lumen of the seminiferous tubule and a process called spermiation then takes place, which removes the remaining unnecessary cytoplasm and organelles. [3]

The resulting spermatozoa are now mature but lack motility, rendering them sterile. The non-motile spermatozoa are transported to the epididymis in testicular fluid secreted by the Sertoli cells, with the aid of peristaltic contraction.

Whilst in the epididymis, they acquire motility. However, transport of the mature spermatozoa through the remainder of the male reproductive system is achieved via muscle contraction rather than the spermatozoon's motility. A glycoprotein coat over the acrosome prevents the sperm from fertilizing the egg prior to traveling through the male and female reproductive tracts. Capacitation of the sperm by the enzymes FPP (fertilization promoting peptide, produced in the prostate gland) and heparin (in the female reproductive tract) removes this coat and allows sperm to bind to the egg.[ citation needed ] [4]

Related Research Articles

<span class="mw-page-title-main">Spermatozoon</span> Motile sperm cell

A spermatozoon is a motile sperm cell, or moving form of the haploid cell that is the male gamete. A spermatozoon joins an ovum to form a zygote.

<span class="mw-page-title-main">Fertilisation</span> Union of gametes of opposite sexes during the process of sexual reproduction to form a zygote

Fertilisation or fertilization, also known as generative fertilisation, syngamy and impregnation, is the fusion of gametes to give rise to a new individual organism or offspring and initiate its development. While processes such as insemination or pollination which happen before the fusion of gametes are also sometimes informally referred to as fertilisation, these are technically separate processes. The cycle of fertilisation and development of new individuals is called sexual reproduction. During double fertilisation in angiosperms the haploid male gamete combines with two haploid polar nuclei to form a triploid primary endosperm nucleus by the process of vegetative fertilisation.

<span class="mw-page-title-main">Intracytoplasmic sperm injection</span> In vitro fertilization procedure

Intracytoplasmic sperm injection is an in vitro fertilization (IVF) procedure in which a single sperm cell is injected directly into the cytoplasm of an egg. This technique is used in order to prepare the gametes for the obtention of embryos that may be transferred to a maternal uterus. With this method, the acrosome reaction is skipped.

<span class="mw-page-title-main">Epididymis</span> Tube that connects a testicle to a vas deferens

The epididymis is a tube that connects a testicle to a vas deferens in the male reproductive system. It is a single, narrow, tightly-coiled tube in adult humans, 6 to 7 meters in length. It serves as an interconnection between the multiple efferent ducts at the rear of a testicle (proximally), and the vas deferens (distally).

<span class="mw-page-title-main">Acrosome reaction</span> Sperm-meets-egg process

During fertilization, a sperm must first fuse with the plasma membrane and then penetrate the female egg cell to fertilize it. Fusing to the egg cell usually causes little problem, whereas penetrating through the egg's hard shell or extracellular matrix can be more difficult. Therefore, sperm cells go through a process known as the acrosome reaction, which is the reaction that occurs in the acrosome of the sperm as it approaches the egg.

<span class="mw-page-title-main">Spermatogenesis</span> Production of sperm

Spermatogenesis is the process by which haploid spermatozoa develop from germ cells in the seminiferous tubules of the testis. This process starts with the mitotic division of the stem cells located close to the basement membrane of the tubules. These cells are called spermatogonial stem cells. The mitotic division of these produces two types of cells. Type A cells replenish the stem cells, and type B cells differentiate into primary spermatocytes. The primary spermatocyte divides meiotically into two secondary spermatocytes; each secondary spermatocyte divides into two equal haploid spermatids by Meiosis II. The spermatids are transformed into spermatozoa (sperm) by the process of spermiogenesis. These develop into mature spermatozoa, also known as sperm cells. Thus, the primary spermatocyte gives rise to two cells, the secondary spermatocytes, and the two secondary spermatocytes by their subdivision produce four spermatozoa and four haploid cells.

<span class="mw-page-title-main">Spermatid</span> Direct precursor of a sperm cell

The spermatid is the haploid male gametid that results from division of secondary spermatocytes. As a result of meiosis, each spermatid contains only half of the genetic material present in the original primary spermatocyte.

Capacitation is the penultimate step in the maturation of mammalian spermatozoa and is required to render them competent to fertilize an oocyte. This step is a biochemical event; the sperm move normally and look mature prior to capacitation. In vivo, capacitation occurs after ejaculation, when the spermatozoa leave the vagina and enter the superior female reproductive tract. The uterus aids in the steps of capacitation by secreting sterol-binding albumin, lipoproteins, and proteolytic and glycosidasic enzymes such as heparin.

<span class="mw-page-title-main">Human reproductive system</span> Organs involved in reproduction.

The human reproductive system includes the male reproductive system which functions to produce and deposit sperm; and the female reproductive system which functions to produce egg cells, and to protect and nourish the fetus until birth. Humans have a high level of sexual differentiation. In addition to differences in nearly every reproductive organ, there are numerous differences in typical secondary sex characteristics.

<span class="mw-page-title-main">Sperm</span> Male reproductive cell in anisogamous forms of sexual reproduction

Sperm is the male reproductive cell, or gamete, in anisogamous forms of sexual reproduction. Animals produce motile sperm with a tail known as a flagellum, which are known as spermatozoa, while some red algae and fungi produce non-motile sperm cells, known as spermatia. Flowering plants contain non-motile sperm inside pollen, while some more basal plants like ferns and some gymnosperms have motile sperm.

<span class="mw-page-title-main">Blood–testis barrier</span> A physical barrier between the blood vessels and the seminiferous tubules of the animal testes

The blood–testis barrier is a physical barrier between the blood vessels and the seminiferous tubules of the animal testes. The name "blood-testis barrier" is misleading in that it is not a blood-organ barrier in a strict sense, but is formed between Sertoli cells of the seminiferous tubule and as such isolates the further developed stages of germ cells from the blood. A more correct term is the "Sertoli cell barrier" (SCB).

<span class="mw-page-title-main">Human fertilization</span> Union of a human egg and sperm

Human fertilization is the union of a human egg and sperm, occurring primarily in the ampulla of the fallopian tube. The result of this union leads to the production of a fertilized egg called a zygote, initiating embryonic development. Scientists discovered the dynamics of human fertilization in the nineteenth century.

<span class="mw-page-title-main">Sperm motility</span> Process involved in the controlled movement of a sperm cell

Sperm motility describes the ability of sperm to move properly through the female reproductive tract or through water to reach the egg. Sperm motility can also be thought of as the quality, which is a factor in successful conception; sperm that do not "swim" properly will not reach the egg in order to fertilize it. Sperm motility in mammals also facilitates the passage of the sperm through the cumulus oophorus and the zona pellucida, which surround the mammalian oocyte.

<span class="mw-page-title-main">VEZT</span> Protein-coding gene in the species Homo sapiens

VEZT is a gene located on chromosome 12 and encodes for the protein vezatin. Vezatin is a major component of the cadherin-catenin complex that is critical to the formation and maintenance of adherens junctions. The protein is expressed in most epithelial cells and is crucial to the formation of cell-cell contact junctions. Mutations of the gene can lead to upregulation or downregulation of the protein which can have detrimental effects on physiological systems, particularly those involved in development.

Spermatozoa develop in the seminiferous tubules of the testes. During their development the spermatogonia proceed through meiosis to become spermatozoa. Many changes occur during this process: the DNA in nuclei becomes condensed; the acrosome develops as a structure close to the nucleus. The acrosome is derived from the Golgi apparatus and contains hydrolytic enzymes important for fusion of the spermatozoon with an egg cell. During spermiogenesis the nucleus condenses and changes shape. Abnormal shape change is a feature of sperm in male infertility. The acroplaxome is a structure found between the acrosomal membrane and the nuclear membrane. The acroplaxome contains structural proteins including keratin 5, F-actin and profilin IV.

FNA mapping is an application of fine-needle aspiration (FNA) to the testis for the diagnosis of male infertility. FNA cytology has been used to examine pathological human tissue from various organs for over 100 years. As an alternative to open testicular biopsy for the last 40 years, FNA mapping has helped to characterize states of human male infertility due to defective spermatogenesis. Although recognized as a reliable, and informative technique, testis FNA has not been widely used in U.S. to evaluate male infertility. Recently, however, testicular FNA has gained popularity as both a diagnostic and therapeutic tool for the management of clinical male infertility for several reasons:

  1. The testis is an ideal organ for evaluation by FNA because of its uniform cellularity and easy accessibility.
  2. The trend toward minimally invasive procedures and cost-containment views FNA favorably compared to surgical testis biopsy.
  3. The realization that the specific histologic abnormality observed on testis biopsy has no definite correlation to either the etiology of infertility or to the ability to find sperm for assisted reproduction.
  4. Assisted reproduction has undergone dramatic advances such that testis sperm are routinely used for biological pregnancies, thus fueling the development of novel FNA techniques to both locate and procure sperm.

In cellular biology, a chromatoid body is a dense structure in the cytoplasm of male germ cells. It is composed mainly of RNA and RNA-binding proteins and is thus a type of RNP granule. Chromatoid body-like granules first appear in spermatocytes and condense into a single granule in round spermatids. The structure disappears again when spermatids start to elongate. The chromatoid body is crucial for spermatogenesis, but its exact role in the process is not known. Following significant strides in the understanding of small non-coding RNA mediated gene regulation and Piwi-interacting RNA (piRNA) and their roles in germline development, the function of chromatoid bodies (CBs) has been somewhat elucidated. However, due to similarities with RNP granules found in somatic cells – such as stress granules and processing bodies – chromatoid body is thought to be involved in post-transcriptional regulation of gene expression. Postmeiotic germ cell differentiation induces the accumulation of piRNAs and proteins of piRNA machinery along with several distinct RNA regulator proteins. Although evidence suggests CB involvement in mRNA regulation and small RNA mediated gene regulation, the mechanism of action remains obscure.

<span class="mw-page-title-main">Globozoospermia</span> Medical condition

Globozoospermia is a rare and severe form of monomorphic teratozoospermia. This means that the spermatozoa show the same abnormality, and over 85% of spermatozoa in sperm have this abnormality. Globozoospermia is responsible for less than 0.1% of male infertility. It is characterised by round-headed spermatozoa without acrosomes, an abnormal nuclear membrane and midpiece defects. Affected males therefore suffer from either reduced fertility or infertility. Studies suggest that globozoospermia can be either total or partial, however it is unclear whether these two forms are variations on the same syndrome, or actually different syndromes.

The proximal centriole-like or PCL is an atypical type of centriole found in the sperm cells of insects. The PCL name is due to some similarity to the Proximal centriole found in Vertebrates sperm and the hypothesis that the two structures are homologous. The PCL is an atypical type of centriole because it does not have microtubules, a defining feature of centrioles. However, the PCL is a type of centriole for several reasons. (1) the PCL formation is dependent upon the same genetic pathway that mediates the initiation of centriole formation. (2) The PCL is composed of centriolar proteins. (3) After fertilization, the sperm PCL function like a centriole. The PCL recruits pericentriolar material (PCM) forming a centrosome that acts as a microtubule-organizing center (MTOC). The PCL also serves as a platform to form a typical centriole in the zygote, as expected from a centriole. Also, the PCL is essential to form one of the two spindle poles of the dividing zygote.

Spermatogenesis-associated protein 16 is a mammalian protein encoded by the SPATA16 gene. SPATA16, also known as NYD-SP12, is a developmental protein that aids in differentiation of germ cells for spermatogenesis and participates in acrosome formation for appropriate sperm-egg fusion. SPATA16 is located on chromosome 3 at position 26.31 and is a member of the tetratricopeptide repeat-like superfamily, which facilitate interactions and assemblies between proteins and protein complexes.

References

  1. ANAT D502 – Basic Histology [ full citation needed ]
  2. "Residual body of Regaud".
  3. O'Donnell, Liza; Nicholls, Peter K.; O'Bryan, Moira K.; McLachlan, Robert I.; Stanton, Peter G. (2011). "Spermiation". Spermatogenesis. 1 (1): 14–35. doi:10.4161/spmg.1.1.14525. PMC   3158646 . PMID   21866274.
  4. Fraser, L. R. (September 1998). "Fertilization promoting peptide: an important regulator of sperm function in vivo?". Reviews of Reproduction. 3 (3): 151–154. doi: 10.1530/ror.0.0030151 . ISSN   1359-6004. PMID   9829549.