Methylorubrum extorquens

Last updated

Methylorubrum extorquens
Scientific classification
Domain:
Phylum:
Class:
Order:
Family:
Genus:
Binomial name
Methylorubrum extorquens
(Urakami and Komagata 1984) Green and Ardley 2018 [1]
Synonyms [2] [3]
  • Bacillus extorquensBassalik 1913
  • Vibrio extorquens(Bassalik 1913) Bhat and Barker 1948
  • Pseudomonas extorquens(Bassalik 1913) Krasil'nikov 1949
  • Flavobacterium extorquens(Bassalik 1913) Bassalik et al. 1960
  • Protomonas extorquens(ex Bassalik 1913) Urakami and Komagata 1984
  • Methylobacterium chloromethanicumMcDonald et al. 2001
  • Methylobacterium dichloromethanicumDoronina et al. 2000
  • Methylobacterium extorquens(Urakami and Komagata 1984) Bousfield and Green 1985
  • Methylobacterium dichloromethanicum subsp. chloromethanicum(McDonald et al. 2001) Hördt et al. 2020

Methylorubrum extorquens is a Gram-negative bacterium. Methylorubrum species often appear pink, and are classified as pink-pigmented facultative methylotrophs, or PPFMs. [4] The wild type has been known to use both methane and multiple carbon compounds as energy sources. [4] Specifically, M. extorquens has been observed to use primarily methanol and C1 compounds as substrates in their energy cycles. [5] It has been also observed that use lanthanides as a cofactor to increase its methanol dehydrogenase activity [6] [7]

Contents

Genetic structure

After isolation from soil, M. extorquens was found to have a single chromosome measuring 5.71-Mb. [8] The bacterium itself contains 70 genes over eight regions of the chromosome that are used for its metabolism of methanol. [9] Within a section of the chromosome, of M. extorquens AM1 are two xoxF genes that enable it to grow in methanol. [9]

M. extorquens AM1 genome encodes a 47.5 kb gene of unknown function. This gene encodes an over 15,000 residue-long polypeptide along with three unique compounds that are not expressed. [10] The microbe uses the mxa gene [11] as a way to dehydrogenate methanol and use it as an energy source. [10]

Chemical use

Methylorubrum extorquens uses primarily C1 and C2 compounds to grow. [9] Utilizing compounds with few carbon-carbon bonds allows the bacterium to successfully grow in environments with methanol, such as on the surface of leaves whose stomata emit methanol. [12] The ability to use methanol as both a carbon and energy source was show to be advantageous when colonizing Medicago truncatula . [13]

H4MPT-dependent formaldehyde oxidation was first isolated in M. extroquens AM1 and has been used to define if an organism is utilizing methylotrophic metabolism. [10]

Relationships with other organisms

Many bacteria within the family Methylobacteriaceae live in different biotic environments such as soils, dust, and plant leaves. [14] Some of these bacteria have been found in symbiotic relationships with the plants they inhabit in which they provide fixed nitrogen or produce vitamin B12. [14] M. extorquens also produces PhyR which plants use to regulate stress response, allowing the plant to survive in different conditions. [15] In addition to PhyR, the bacterium can produce a hormone related to overall plant and root growth. [9]

M. extorquens has been found to have a mutualistic relationship with strawberries. [16] Ultimately, M. extorquens is used to oxidize 1,2-propanediol to lactaldehyde, which is later used in chemical reactions. [17] If introduced to blooming plants, furaneol production increases, changing the way the strawberry tastes. [16]

See also

Related Research Articles

<span class="mw-page-title-main">Acidobacteriota</span> Phylum of bacteria

Acidobacteriota is a phylum of Gram-negative bacteria. Its members are physiologically diverse and ubiquitous, especially in soils, but are under-represented in culture.

<i>Medicago truncatula</i> Species of legume

Medicago truncatula, the barrelclover, strong-spined medick, barrel medic, or barrel medick, is a small annual legume native to the Mediterranean region that is used in genomic research. It is a low-growing, clover-like plant 10–60 centimetres (3.9–23.6 in) tall with trifoliate leaves. Each leaflet is rounded, 1–2 centimetres (0.39–0.79 in) long, often with a dark spot in the center. The flowers are yellow, produced singly or in a small inflorescence of two to five together; the fruit is a small, spiny pod.

<i>Ensifer meliloti</i> Species of bacterium

Ensifer meliloti are an aerobic, Gram-negative, and diazotrophic species of bacteria. S. meliloti are motile and possess a cluster of peritrichous flagella. S. meliloti fix atmospheric nitrogen into ammonia for their legume symbionts, such as alfalfa. S. meliloti forms a symbiotic relationship with legumes from the genera Medicago, Melilotus and Trigonella, including the model legume Medicago truncatula. This symbiosis promotes the development of a plant organ, termed a root nodule. Because soil often contains a limited amount of nitrogen for plant use, the symbiotic relationship between S. meliloti and their legume hosts has agricultural applications. These techniques reduce the need for inorganic nitrogenous fertilizers.

<span class="mw-page-title-main">Nod factor</span> Signaling molecule

Nod factors, are signaling molecules produced by soil bacteria known as rhizobia in response to flavonoid exudation from plants under nitrogen limited conditions. Nod factors initiate the establishment of a symbiotic relationship between legumes and rhizobia by inducing nodulation. Nod factors produce the differentiation of plant tissue in root hairs into nodules where the bacteria reside and are able to fix nitrogen from the atmosphere for the plant in exchange for photosynthates and the appropriate environment for nitrogen fixation. One of the most important features provided by the plant in this symbiosis is the production of leghemoglobin, which maintains the oxygen concentration low and prevents the inhibition of nitrogenase activity.

Methylotrophs are a diverse group of microorganisms that can use reduced one-carbon compounds, such as methanol or methane, as the carbon source for their growth; and multi-carbon compounds that contain no carbon-carbon bonds, such as dimethyl ether and dimethylamine. This group of microorganisms also includes those capable of assimilating reduced one-carbon compounds by way of carbon dioxide using the ribulose bisphosphate pathway. These organisms should not be confused with methanogens which on the contrary produce methane as a by-product from various one-carbon compounds such as carbon dioxide. Some methylotrophs can degrade the greenhouse gas methane, and in this case they are called methanotrophs. The abundance, purity, and low price of methanol compared to commonly used sugars make methylotrophs competent organisms for production of amino acids, vitamins, recombinant proteins, single-cell proteins, co-enzymes and cytochromes.

Pink-Pigmented Facultative Methylotrophs, commonly abbreviated to PPFMs, are bacteria that are members of the genus Methylobacterium and are commonly found in soil, dust, various fresh water supplies and on plant surfaces. Although Gram negative, Methylobacteria often stain gram variable and are easily isolated using methanol-based mineral medium. Their pigmentation, which is frequently pink but may also be yellow or orange, is thought to provide protection from solar UV radiation which damages the DNA of bacteria at low doses because of their small cell size. This color is present due to the carotenoid pigments within the cell.

Dehalococcoides is a genus of bacteria within class Dehalococcoidia that obtain energy via the oxidation of hydrogen and subsequent reductive dehalogenation of halogenated organic compounds in a mode of anaerobic respiration called organohalide respiration. They are well known for their great potential to remediate halogenated ethenes and aromatics. They are the only bacteria known to transform highly chlorinated dioxins, PCBs. In addition, they are the only known bacteria to transform tetrachloroethene to ethene.

<i>Pseudomonas stutzeri</i> Species of bacterium

Pseudomonas stutzeri is a Gram-negative soil bacterium that is motile, has a single polar flagellum, and is classified as bacillus, or rod-shaped. While this bacterium was first isolated from human spinal fluid, it has since been found in many different environments due to its various characteristics and metabolic capabilities. P. stutzeri is an opportunistic pathogen in clinical settings, although infections are rare. Based on 16S rRNA analysis, this bacterium has been placed in the P. stutzeri group, to which it lends its name.

Methylobacterium radiotolerans is a radiation-tolerating Gram-negative bacterium. It has been shown that it can use lanthanide as a cofactor to increase its methanol dehydrogenase activity

Methylobacillus flagellatus is a species of aerobic bacteria.

Methylocella silvestris is a bacterium from the genus Methylocella spp which are found in many acidic soils and wetlands. Historically, Methylocella silvestris was originally isolated from acidic forest soils in Germany, and it is described as Gram-negative, aerobic, non-pigmented, non-motile, rod-shaped and methane-oxidizing facultative methanotroph. As an aerobic methanotrophic bacteria, Methylocella spp use methane (CH4), and methanol as their main carbon and energy source, as well as multi compounds acetate, pyruvate, succinate, malate, and ethanol. They were known to survive in the cold temperature from 4° to 30° degree of Celsius with the optimum at around 15° to 25 °C, but no more than 36 °C. They grow better in the pH scale between 4.5 to 7.0. It lacks intracytoplasmic membranes common to all methane-oxidizing bacteria except Methylocella, but contain a vesicular membrane system connected to the cytoplasmic membrane. BL2T (=DSM 15510T=NCIMB 13906T) is the type strain.

<i>Methanohalophilus mahii</i> Species of archaeon

Methanohalophilus mahii is an obligately anaerobic, methylotrophic, methanogenic cocci-shaped archaeon of the genus Methanohalophilus that can be found in high salinity aquatic environments. The name Methanohalophilus is said to be derived from methanum meaning "methane" in Latin; halo meaning "salt" in Greek; and mahii meaning "of Mah" in Latin, after R.A. Mah, who did substantial amounts of research on aerobic and methanogenic microbes. The proper word in ancient Greek for "salt" is however hals (ἅλς). The specific strain type was designated SLP and is currently the only identified strain of this species.

<span class="mw-page-title-main">Julia Vorholt</span> Swiss microbiologist

Julia A. Vorholt is a full professor of microbiology at ETH Zurich and an elected member of the German Academy of Sciences Leopoldina.

Congregibacter litoralis KT71 is a gram-negative Gammaproteobacteria part of the NOR5/OM60 Clade discovered in seawater from Heligoland, an island in the North Sea by H. Eilers from the Max Planck Institute for Microbiology. C. litoralis KT71 is described as a pleomorphic bacterium and has a size of 2 x 0.5 μm. When grown in culture, C. litoralis KT71 has a generation time of 4.5 hours and prefers to grow on complex substrates where the sole carbon source is undefined, though it can utilize some sole carbon sources because they are most likely used by the organism for its central metabolism.

Methylorubrum podarium is a Gram-negative bacteria from the genus Methylorubrum which has been isolated from a human foot in the United Kingdom.

Methylorubrum suomiense is a facultatively methylotrophic and aerobic bacteria from the genus Methylorubrum which has been isolated from forest soil in Finland.

Methylacidiphilum fumariolicum is an autotrophic bacterium first described in 2007 growing on volcanic pools near Naples, Italy. It grows in mud at temperatures between 50 °C - 60 °C and an acidic pH of 2–5. It is able to oxidize methane gas. It uses ammonium, nitrate or atmospheric nitrogen as a nitrogen source and fixes carbon dioxide.

Methylophaga thiooxydans is a methylotrophic bacterium that requires high salt concentrations for growth. It was originally isolated from a culture of the algae Emiliania huxleyi, where it grows by breaking down dimethylsulfoniopropionate from E. hexleyi into dimethylsulfide and acrylate. M. thiooxydans has been implicated as a dominant organism in phytoplankton blooms, where it consumes dimethylsulfide, methanol and methyl bromide released by dying phytoplankton. It was also identified as one of the dominant organisms present in the plume following the Deepwater Horizon oil spill, and was identified as a major player in the breakdown of methanol in coastal surface water in the English channel.

Bacillus methanolicus is a gram positive, thermophilic, methylotrophic member of the genus Bacillus. The most well characterized strain of the species, Bacillus methanolicus MGA3, was isolated from freshwater marsh soils, and grows rapidly in cultures heated to up to 60 °C using only methanol as a carbon source. The genome of B. methanolicus MGA3 was fully sequenced in 2014, revealing a 3,337,035 bp linear chromosome and two natural plasmids, pBM19 and pBM69.

Ann Patricia Wood is a retired British biochemist and bacteriologist who specialized in the ecology, taxonomy and physiology of sulfur-oxidizing chemolithoautotrophic bacteria and how methylotrophic bacteria play a role in the degradation of odour causing compounds in the human mouth, vagina and skin. The bacterial genus Annwoodia was named to honor her contributions to microbial research in 2017.

References

  1. Green PN, Ardley JK (September 2018). "Review of the genus Methylobacterium and closely related organisms: a proposal that some Methylobacterium species be reclassified into a new genus, Methylorubrum gen. nov". International Journal of Systematic and Evolutionary Microbiology. 68 (9): 2727–2748. doi: 10.1099/ijsem.0.002856 . PMID   30024371.
  2. LPSN lpsn.dsmz.de
  3. Kato Y, Asahara M, Arai D, Goto K, Yokota A (October 2005). "Reclassification of Methylobacterium chloromethanicum and Methylobacterium dichloromethanicum as later subjective synonyms of Methylobacterium extorquens and of Methylobacterium lusitanum as a later subjective synonym of Methylobacterium rhodesianum". The Journal of General and Applied Microbiology. 51 (5): 287–299. doi: 10.2323/jgam.51.287 . PMID   16314683.
  4. 1 2 Lidstrom ME, Chistoserdova L (April 2002). "Plants in the pink: cytokinin production by methylobacterium". Journal of Bacteriology. 184 (7): 1818. doi:10.1128/JB.184.7.1818.2002. PMC   134909 . PMID   11889085.
  5. Belkhelfa S, Roche D, Dubois I, Berger A, Delmas VA, Cattolico L, et al. (2019). "Continuous Culture Adaptation of Methylobacterium extorquens AM1 and TK 0001 to Very High Methanol Concentrations". Frontiers in Microbiology. 10: 1313. doi: 10.3389/fmicb.2019.01313 . PMC   6595629 . PMID   31281294.
  6. Good, Nathan M.; Fellner, Matthias; Demirer, Kemal; Hu, Jian; Hausinger, Robert P.; Martinez-Gomez, N. Cecilia (February 25, 2020). "Lanthanide-dependent alcohol dehydrogenases require an essential aspartate residue for metal coordination and enzymatic function". Journal of Biological Chemistry. 295 (24): 8272–8284. doi:10.1074/jbc.RA120.013227.
  7. Nakagawa T, Mitsui R, Tani A, Sasa K, Tashiro S, Iwama T, et al. (2012-11-27). "A catalytic role of XoxF1 as La3+-dependent methanol dehydrogenase in Methylobacterium extorquens strain AM1". PLOS ONE. 7 (11): e50480. Bibcode:2012PLoSO...750480N. doi: 10.1371/journal.pone.0050480 . PMC   3507691 . PMID   23209751.
  8. Belkhelfa S, Labadie K, Cruaud C, Aury JM, Roche D, Bouzon M, et al. (February 2018). "Complete Genome Sequence of the Facultative Methylotroph Methylobacterium extorquens TK 0001 Isolated from Soil in Poland". Genome Announcements. 6 (8). doi:10.1128/genomeA.00018-18. PMC   5824006 . PMID   29472323.
  9. 1 2 3 4 Dourado MN, Camargo Neves AA, Santos DS, Araújo WL (2015). "Biotechnological and agronomic potential of endophytic pink-pigmented methylotrophic Methylobacterium spp". BioMed Research International. 2015: 909016. doi: 10.1155/2015/909016 . PMC   4377440 . PMID   25861650.
  10. 1 2 3 Vuilleumier S, Chistoserdova L, Lee MC, Bringel F, Lajus A, Zhou Y, et al. (2009-05-18). "Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources". PLOS ONE. 4 (5): e5584. Bibcode:2009PLoSO...4.5584V. doi: 10.1371/journal.pone.0005584 . PMC   2680597 . PMID   19440302.
  11. "MX1 Gene - GeneCards | MX1 Protein | MX1 Antibody". www.genecards.org. Retrieved 2020-11-02.
  12. Nemecek-Marshall M, MacDonald RC, Franzen JJ, Wojciechowski CL, Fall R (August 1995). "Methanol Emission from Leaves (Enzymatic Detection of Gas-Phase Methanol and Relation of Methanol Fluxes to Stomatal Conductance and Leaf Development)". Plant Physiology. 108 (4): 1359–1368. doi:10.1104/pp.108.4.1359. PMC   157513 . PMID   12228547.
  13. Sy A, Timmers AC, Knief C, Vorholt JA (November 2005). "Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions". Applied and Environmental Microbiology. 71 (11): 7245–7252. Bibcode:2005ApEnM..71.7245S. doi:10.1128/AEM.71.11.7245-7252.2005. PMC   1287603 . PMID   16269765.
  14. 1 2 Sy A, Timmers AC, Knief C, Vorholt JA (November 2005). "Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions". Applied and Environmental Microbiology. 71 (11): 7245–7252. Bibcode:2005ApEnM..71.7245S. doi:10.1128/AEM.71.11.7245-7252.2005. PMC   1287603 . PMID   16269765.
  15. Gourion B, Francez-Charlot A, Vorholt JA (February 2008). "PhyR is involved in the general stress response of Methylobacterium extorquens AM1". Journal of Bacteriology. 190 (3): 1027–1035. doi:10.1128/JB.01483-07. PMC   2223570 . PMID   18024517.
  16. 1 2 Siegmund B, Leitner E (January 2014). "Chapter 26 - The Effect of Methylobacteria Application on Strawberry Flavor Investigated by GC-MS and Comprehensive GC×GC-qMS". In Ferreira V, Lopez R (eds.). Flavour Science. San Diego: Academic Press. pp. 141–145. ISBN   978-0-12-398549-1.
  17. Nasopoulou C, Pohjanen J, Koskimäki JJ, Zabetakis I, Pirttilä AM (August 2014). "Localization of strawberry (Fragaria x ananassa) and Methylobacterium extorquens genes of strawberry flavor biosynthesis in strawberry tissue by in situ hybridization". Journal of Plant Physiology. 171 (13): 1099–1105. doi:10.1016/j.jplph.2014.03.018. PMID   24973582.