Michel Davier

Last updated

Michel Davier (born 6 March 1942) is a French physicist.

Contents

Graduate of the École normale supérieure de Saint-Cloud (science), he was Director of the Laboratory of Linear Accelerator in Orsay from 1985 to 1994. Winner of the Gentner-Kastler Prize in 1994, he was elected a member of the French Academy of Sciences (Physics section) in 1996. [1] He was appointed senior member of the Institut universitaire de France in 1991 for a five-year term, [2] renewed in 1996. [3]

He has been teaching physics since 1975 at the Paris-Sud University at the Centre scientifique d'Orsay.

Biography

Originally from Ambérieu-en-Bugey (Ain), Michel Davier studied at the Lycée Lalande in Bourg-en-Bresse, at the École Normale d'instituteurs in the same city, and then at the École Normale d'instituteurs in Lyon. After a year of preparatory classes at the Lycée Chaptal in Paris in 1960–61, he entered the École normale supérieure de Saint-Cloud where he obtained a degree in physics and chemistry. Admitted to the first agrégation in physics in 1965, he chose to focus on higher education and research in elementary particle physics. Having joined the Laboratory of Linear Accelerator (LAL) founded in Orsay by the École Normale Supérieure as an assistant at the University of Paris-Sud, he did his doctoral work on the photoproduction of vector mesons at Stanford University in California at the Stanford Linear Accelerator Center (SLAC), which he defended in 1969 in Orsay. After a two-year stay at the European Centre for Nuclear Research (CERN) in Geneva, he joined Stanford University and SLAC as an assistant professor, then associate professor in 1973 where he conducted hadronic diffusion experiments. He returned to France in 1975 to take up the professorship left vacant by the untimely death of André Lagarrigue. He launched a research program on electron-positron annihilation at the highest energies available at the PETRA collider installed at the DESY laboratory in Hamburg. He is one of the founders of the ALEPH experiment that continues this research at CERN on the LEP collider from 1989, providing precision measurements that will establish the Standard Model of Fundamental Interactions.  In 2001, he joined the international collaboration that operates the BABAR detector at SLAC to launch an original precision measurement program. In parallel with his activities in particle physics, he strongly supports the Franco-Italian Virgo project for the research of gravitational waves and welcomed Alain Brillet's team to the LAL in 1991. He actively participates in the construction of the interferometer and data analysis by creating his own group.

He directed the Linear Accelerator Laboratory from 1985 to 1993. Senior member of the Institut Universitaire de France since 1991, corresponding member of the French Academy of Sciences in 1994, he was elected member in 1996. He has been a member of numerous international scientific councils: SLAC (Stanford), LAL (Orsay), CERN (Geneva), DESY (Hamburg), LNF (Frascati), IHEP (Beijing), KEK (Tokyo), APPEC (Europe), LIGO (Caltech, MIT, Hanford, Livingston), Scientific Guidelines Committee (SPC, CERN), National Committee and CNRS Scientific Council (2001–05), Helmholtz Gemeinschaft (Berlin).

The dual aspect of university education, at the University of Paris-Sud, the École Normale Supérieure and the École Polytechnique, and the training of young researchers represents an important investment in Michel Davier's career. He has actively supervised many doctoral theses. In this field, he has maintained a privileged relationship with China since 1988 through close collaboration with the Institute of High Energy Physics (IHEP, Beijing), for the training of Chinese doctoral students and postdoctoral fellows in Orsay, many of whom are now professors and scientific leaders in China.

Scientific works

Michel Davier's research has led to significant advances in the physics of strong and electroweak interactions through the construction and operation of large detectors, CELLO in Hamburg, ALEPH at CERN and BABAR at SLAC:

The construction, development and analysis of the Virgo interferometer data involved a colossal effort through international collaboration in which the group founded by Michel Davier at the LAL took a significant part:

Books

Honors and awards

Related Research Articles

<span class="mw-page-title-main">LIGO</span> Gravitational wave detector

The Laser Interferometer Gravitational-Wave Observatory (LIGO) is a large-scale physics experiment and observatory designed to detect cosmic gravitational waves and to develop gravitational-wave observations as an astronomical tool. Two large observatories were built in the United States with the aim of detecting gravitational waves by laser interferometry. These observatories use mirrors spaced four kilometers apart which are capable of detecting a change of less than one ten-thousandth the charge diameter of a proton.

<span class="mw-page-title-main">Tau (particle)</span> Elementary subatomic particle with negative electric charge

The tau, also called the tau lepton, tau particle, tauon or tau electron, is an elementary particle similar to the electron, with negative electric charge and a spin of 1/2. Like the electron, the muon, and the three neutrinos, the tau is a lepton, and like all elementary particles with half-integer spin, the tau has a corresponding antiparticle of opposite charge but equal mass and spin. In the tau's case, this is the "antitau". Tau particles are denoted by the symbol
τ
and the antitaus by 
τ+
.

<span class="mw-page-title-main">Albert Fert</span> French physicist (born 1938)

Albert Fert is a French physicist and one of the discoverers of giant magnetoresistance which brought about a breakthrough in gigabyte hard disks. Currently, he is an emeritus professor at Paris-Saclay University in Orsay, scientific director of a joint laboratory between the Centre national de la recherche scientifique and Thales Group, and adjunct professor at Michigan State University. He was awarded the 2007 Nobel Prize in Physics together with Peter Grünberg.

<span class="mw-page-title-main">IceCube Neutrino Observatory</span> Neutrino detector at the South Pole

The IceCube Neutrino Observatory is a neutrino observatory constructed at the Amundsen–Scott South Pole Station in Antarctica. The project is a recognized CERN experiment (RE10). Its thousands of sensors are located under the Antarctic ice, distributed over a cubic kilometre.

<span class="mw-page-title-main">GEO600</span> Gravitational wave detector in Germany

GEO600 is a gravitational wave detector located near Sarstedt, a town 20 km to the south of Hanover, Germany. It is designed and operated by scientists from the Max Planck Institute for Gravitational Physics, Max Planck Institute of Quantum Optics and the Leibniz Universität Hannover, along with University of Glasgow, University of Birmingham and Cardiff University in the United Kingdom, and is funded by the Max Planck Society and the Science and Technology Facilities Council (STFC). GEO600 is capable of detecting gravitational waves in the frequency range 50 Hz to 1.5 kHz, and is part of a worldwide network of gravitational wave detectors. This instrument, and its sister interferometric detectors, when operational, are some of the most sensitive gravitational wave detectors ever designed. They are designed to detect relative changes in distance of the order of 10−21, about the size of a single atom compared to the distance from the Sun to the Earth. Construction on the project began in 1995.

Quantum metrology is the study of making high-resolution and highly sensitive measurements of physical parameters using quantum theory to describe the physical systems, particularly exploiting quantum entanglement and quantum squeezing. This field promises to develop measurement techniques that give better precision than the same measurement performed in a classical framework. Together with quantum hypothesis testing, it represents an important theoretical model at the basis of quantum sensing.

<span class="mw-page-title-main">Virgo interferometer</span> Gravitational wave detector in Santo Stefano a Macerata, Tuscany, Italy

The Virgo interferometer is a large Michelson interferometer designed to detect gravitational waves predicted by general relativity. It is located in Santo Stefano a Macerata, near the city of Pisa, Italy. The instrument's two arms are three kilometres long, housing its mirrors and instrumentation inside an ultra-high vacuum.

<span class="mw-page-title-main">Gravitational-wave astronomy</span> Branch of astronomy using gravitational waves

Gravitational-wave astronomy is an emerging field of science, concerning the observations of gravitational waves to collect relatively unique data and make inferences about objects such as neutron stars and black holes, events such as supernovae, and processes including those of the early universe shortly after the Big Bang.

Louis Michel (1923–1999) was a French mathematical physicist at the Institut des Hautes Études Scientifiques (IHÉS). He was born in Roanne, in the Loire department in central France, on 4 May 1923, and died in Bures-sur-Yvette (Essonne), in the Île-de-France region, on 30 December 1999.

<span class="mw-page-title-main">Alessandra Buonanno</span> Italian-American physicist

Alessandra Buonanno is an Italian-American theoretical physicist and director at the Max Planck Institute for Gravitational Physics in Potsdam. She is the head of the "Astrophysical and Cosmological Relativity" department. She holds a research professorship at the University of Maryland, College Park, and honorary professorships at the Humboldt University in Berlin, and the University of Potsdam. She is a leading member of the LIGO Scientific Collaboration, which observed gravitational waves from a binary black-hole merger in 2015.

André Neveu is a French physicist working on string theory and quantum field theory who coinvented the Neveu–Schwarz algebra and the Gross–Neveu model.

Jean Zinn-Justin is a French theoretical physicist.

Jean-Michel Raimond is a French physicist working in the field of quantum mechanics.

<span class="mw-page-title-main">First observation of gravitational waves</span> 2015 direct detection of gravitational waves by the LIGO and VIRGO interferometers

The first direct observation of gravitational waves was made on 14 September 2015 and was announced by the LIGO and Virgo collaborations on 11 February 2016. Previously, gravitational waves had been inferred only indirectly, via their effect on the timing of pulsars in binary star systems. The waveform, detected by both LIGO observatories, matched the predictions of general relativity for a gravitational wave emanating from the inward spiral and merger of a pair of black holes of around 36 and 29 solar masses and the subsequent "ringdown" of the single resulting black hole. The signal was named GW150914. It was also the first observation of a binary black hole merger, demonstrating both the existence of binary stellar-mass black hole systems and the fact that such mergers could occur within the current age of the universe.

<span class="mw-page-title-main">GW170817</span> Gravitational-wave signal detected in 2017

GW 170817 was a gravitational wave (GW) signal observed by the LIGO and Virgo detectors on 17 August 2017, originating from the shell elliptical galaxy NGC 4993. The signal was produced by the last moments of a binary pair of neutron stars' inspiral process, ending with their merger. It is the first GW observation that has been confirmed by non-gravitational means. Unlike the five previous GW detections—which were of merging black holes, and thus not expected to produce a detectable electromagnetic signal—the aftermath of this merger was seen across the electromagnetic spectrum by 70 observatories on 7 continents and in space, marking a significant breakthrough for multi-messenger astronomy. The discovery and subsequent observations of GW 170817 were given the Breakthrough of the Year award for 2017 by the journal Science.

PyCBC is an open source software package primarily written in the Python programming language which is designed for use in gravitational-wave astronomy and gravitational-wave data analysis. PyCBC contains modules for signal processing, FFT, matched filtering, gravitational waveform generation, among other tasks common in gravitational-wave data analysis.

<span class="mw-page-title-main">Florent Krzakala</span> French physicist and engineer

Florent Krzakala is a French physicist and applied mathematician, currently a professor at EPFL. His research focuses on the resolution of theoretical problems in physics, computer science, machine learning, statistics and signal processing using mathematical tools inspired by the field of statistical physics.

Lisa Barsotti is a research scientist at the Massachusetts Institute of Technology Kavli Institute.

Pierre Binétruy was a French theoretical physicist, known for his research on cosmology, gravitational waves, strong nuclear interactions, and supersymmetry.

References

  1. 1 2 "Académie des sciences".
  2. "Arrêté du 2 décembre 1991 portant nomination à l'Institut universitaire de France". JORF . 286: 16074. 8 December 1991.
  3. Arrêté du 8 août 1996 portant nomination des membres seniors et juniors de l'Institut universitaire de France, JORF no 191 du 17 août 1996, p. 12453, NOR MENK9602306A, sur Légifrance.
  4. Michel Davier (December 1982). "Electro-weak neutral currents" (PDF). Le Journal de Physique Colloques. 43 (C3): 471–511. doi:10.1051/jphyscol:1982372. ISSN   0449-1947.
  5. A. Heister (June 2001). "Measurement of the Tau Polarisation at LEP". The European Physical Journal C. 20 (3): 401–430. arXiv: hep-ex/0104038 . Bibcode:2001EPJC...20..401H. doi:10.1007/s100520100689. S2CID   119469784.
  6. S. Schael; R. Brunelière; G. Dissertori (December 2005). "Branching ratios and spectral functions of τ decays: Final ALEPH measurements and physics implications". Physics Reports. 421 (5–6): 191–284. arXiv: hep-ex/0506072 . Bibcode:2005PhR...421..191S. doi:10.1016/j.physrep.2005.06.007.
  7. Michel Davier; Andreas Höcker; Zhiqing Zhang (October–December 2006). "The physics of hadronic tau decays". Reviews of Modern Physics . 78 (4): 1043–1109. arXiv: hep-ph/0507078 . Bibcode:2006RvMP...78.1043D. doi:10.1103/RevModPhys.78.1043. ISSN   0034-6861. S2CID   119334071.
  8. Michel Davier; William J. Marciano (2004). "The theoretical prediction for the muon anomalous magnetic moment" (PDF). Annual Review of Nuclear and Particle Science . 54: 115–140. Bibcode:2004ARNPS..54..115D. doi: 10.1146/annurev.nucl.54.070103.181204 .
  9. Michel Davier; Andreas Höcker; B. Malaescu.; Zhiqing Zhang (2017). "Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon and using newest hadronic cross-section data". The European Physical Journal C. 77: 827. arXiv: 1706.09436 . doi: 10.1140/epjc/s10052-017-5161-6 .
  10. B. Aubert (December 2009). "Precise Measurement of the e+e−→π+π−(γ) Cross Section with the Initial State Radiation Method at BABAR". Physical Review Letters . 103 (23): 231801. arXiv: 0908.3589 . doi:10.1103/PhysRevLett.103.231801. ISSN   0031-9007. PMID   20366141. S2CID   10609473.
  11. Nicolas Arnaud; Patrice Hello; Matteo Barsuglia; Marie-Anne Bizouard (2005). "The Global Control of the Virgo experiment". Nuclear Instruments and Methods in Physics Research A. 550 (2): 467. Bibcode:2005NIMPA.550..467A. doi:10.1016/j.nima.2005.03.173. ISSN   0168-9002.
  12. Nicolas Arnaud; Thierry Pradier; Marie-Anne Bizouard; Violette Brisson (March 2003). "Comparison of filters for detecting gravitational wave bursts in interferometric detectors". Physical Review D . 67 (6): 062004. arXiv: gr-qc/0210098 . Bibcode:2003PhRvD..67f2004A. doi:10.1103/PhysRevD.67.062004. ISSN   1550-7998. S2CID   5498676.
  13. B. P. Abbott (12 February 2016). "Observation of Gravitational Waves from a Binary Black Hole Merger". Physical Review Letters . 116 (6): 061102. arXiv: 1602.03837 . Bibcode:2016PhRvL.116f1102A. doi:10.1103/PhysRevLett.116.061102. ISSN   0031-9007. PMID   26918975. S2CID   124959784.
  14. B. P. Abbott et al., LIGO Scientific Collaboration and Virgo Collaboration, « GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence », Physical Review Letters, vol. 119, no 14, 6 octobre 2017, p. 141101 (ISSN 0031-9007, DOI 10.1103/PhysRevLett.119.141101)
  15. B. P. Abbott (20 October 2017). "GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral". Physical Review Letters . 119 (16): 161101. arXiv: 1710.05832 . Bibcode:2017PhRvL.119p1101A. doi:10.1103/PhysRevLett.119.161101. ISSN   0031-9007. PMID   29099225.
  16. "Prix des trois physiciens - Département de Physique de l'Ecole Normale supérieure". graphene-and-co.org. Retrieved 2020-02-12.
  17. Décret du 10 mai 1995 portant promotion et nomination, NOR: PREX9511324D (JORF n°112 du 13 mai 1995 page 8055)
  18. Décret du 12 juillet 2017 portant promotion et nomination, NOR : PREX1720448D, p.5 (grade de chevalier pour le Ministère de l’enseignement supérieur, de la recherche et de l’innovation)