Michellamine

Last updated
Michellamine B
Michellamine.svg
Names
Preferred IUPAC name
(1R,1′R,3R,3′R)-5,5′-(1,1′-Dihydroxy-8,8′-dimethoxy-6,6′-dimethyl[2,2′-binaphthalene]-4,4′-diyl)bis(1,3-dimethyl-1,2,3,4-tetrahydroisoquinoline-6,8-diol)
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
PubChem CID
  • InChI=1S/C46H48N2O8/c1-19-9-25-27(41-31-13-21(3) 47-23(5)39(31)33(49)17-35(41)51)15-29(45(53)43(25)37(11-19)55-7)30-16-28(26-10-20(2)12-38(56-8)44(26)46(30)54)42-32-14-22(4)48-24(6)40(32)34(50)18-36(42)52/h9-12,15-18,21-24,47-54H,13-14H2,1-8H3/t21-,22-,23-,24-/m1/s 1
  • Oc1c8c(c(c(O)c1)c2cc(c(O)c3c2cc(cc3OC)C)c7c(O)c4c(cc(cc4OC)C)c(c5c(O)cc(O)c6c5C[C@H](N[C@@H]6C)C)c7)C[C@H](N[C@@H]8C)C
Properties
C46H48N2O8
Molar mass 756.896 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Michellamines are a group of atropisomeric alkaloid which have been found to be HIV viral replication inhibitors in vitro . It was discovered in the leaves of Ancistrocladus korupensis . [1] There are three michellamines represented as A, B, and C; however, michellamine B is the most active against the NID-DZ strain of HIV-2. [2]

Contents

Occurrence

Michellamine A and B occur naturally in Ancistrocladus korupensis leaves. Other chemical substances including alkaloids, tannins, and saponins are found in the roots, leaves, stems, flowers, or bark.[ citation needed ]

Synthesis

There are two methods explored to synthesize michellamines A and B. The first one, originally synthesized in 1994, is a retrosynthesis that leads to a biomimetic pathway that uses the construction of naphthalene/isoquinoline bonds before the naphthalene/naphthalene axis. The second method, originally synthesized only a few montes after the first method, is a complementary pathway that would use the naphthalene/naphthalene axis after it is created and add the two isoquinoline moieties. [3]

Research

Michellamines inhibit protein kinase C and virus-induced cellular fusion. [4] They have a broad range of effectiveness in vitro across most HIV strains, particularly the HIV-2 strain, which is found primarily in and around Cameroon. [4]

Related Research Articles

HMG-CoA reductase Mammalian protein found in Homo sapiens

HMG-CoA reductase is the rate-controlling enzyme of the mevalonate pathway, the metabolic pathway that produces cholesterol and other isoprenoids. HMGCR catalyzes the conversion of HMG-CoA to mevalonic acid, a necessary step in the biosynthesis of cholesterol. Normally in mammalian cells this enzyme is competitively suppressed so that its effect is controlled. This enzyme is the target of the widely available cholesterol-lowering drugs known collectively as the statins, which help treat dyslipidemia.

Prenylation Addition of hydrophobic moieties to proteins or other biomolecules

Prenylation is the addition of hydrophobic molecules to a protein or a biomolecule. It is usually assumed that prenyl groups (3-methylbut-2-en-1-yl) facilitate attachment to cell membranes, similar to lipid anchors like the GPI anchor, though direct evidence of this has not been observed. Prenyl groups have been shown to be important for protein–protein binding through specialized prenyl-binding domains.

Chemical biology is a scientific discipline spanning the fields of chemistry and biology. The discipline involves the application of chemical techniques, analysis, and often small molecules produced through synthetic chemistry, to the study and manipulation of biological systems. In contrast to biochemistry, which involves the study of the chemistry of biomolecules and regulation of biochemical pathways within and between cells, chemical biology deals with chemistry applied to biology.

Phosphofructokinase 2 Class of enzymes

Phosphofructokinase-2 (6-phosphofructo-2-kinase, PFK-2) or fructose bisphosphatase-2 (FBPase-2), is an enzyme indirectly responsible for regulating the rates of glycolysis and gluconeogenesis in cells. It catalyzes formation and degradation of a significant allosteric regulator, fructose-2,6-bisphosphate (Fru-2,6-P2) from substrate fructose-6-phosphate. Fru-2,6-P2 contributes to the rate-determining step of glycolysis as it activates enzyme phosphofructokinase 1 in the glycolysis pathway, and inhibits fructose-1,6-bisphosphatase 1 in gluconeogenesis. Since Fru-2,6-P2 differentially regulates glycolysis and gluconeogenesis, it can act as a key signal to switch between the opposing pathways. Because PFK-2 produces Fru-2,6-P2 in response to hormonal signaling, metabolism can be more sensitively and efficiently controlled to align with the organism's glycolytic needs. This enzyme participates in fructose and mannose metabolism. The enzyme is important in the regulation of hepatic carbohydrate metabolism and is found in greatest quantities in the liver, kidney and heart. In mammals, several genes often encode different isoforms, each of which differs in its tissue distribution and enzymatic activity. The family described here bears a resemblance to the ATP-driven phospho-fructokinases, however, they share little sequence similarity, although a few residues seem key to their interaction with fructose 6-phosphate.

<i>Ancistrocladus</i> Genus of flowering plants

Ancistrocladus is a genus of woody lianas in the monotypic family Ancistrocladaceae. The branches climb by twining other stems or by scrambling with hooked tips. They are found in the tropics of the Old World.

Protein kinase R Protein-coding gene in the species Homo sapiens

Protein kinase RNA-activated also known as protein kinase R (PKR), interferon-induced, double-stranded RNA-activated protein kinase, or eukaryotic translation initiation factor 2-alpha kinase 2 (EIF2AK2) is an enzyme that in humans is encoded by the EIF2AK2 gene.

Deoxycytidine kinase

Deoxycytidine kinase (dCK) is an enzyme which is encoded by the DCK gene in humans. dCK predominantly phosphorylates deoxycytidine (dC) and converts dC into deoxycytidine monophosphate. dCK catalyzes one of the initial steps in the nucleoside salvage pathway and has the potential to phosphorylate other preformed nucleosides, specifically deoxyadenosine (dA) and deoxyguanosine (dG), and convert them into their monophosphate forms. There has been recent biomedical research interest in investigating dCK's potential as a therapeutic target for different types of cancer.

NAD<sup>+</sup> kinase Enzyme

NAD+ kinase (EC 2.7.1.23, NADK) is an enzyme that converts nicotinamide adenine dinucleotide (NAD+) into NADP+ through phosphorylating the NAD+ coenzyme. NADP+ is an essential coenzyme that is reduced to NADPH primarily by the pentose phosphate pathway to provide reducing power in biosynthetic processes such as fatty acid biosynthesis and nucleotide synthesis. The structure of the NADK from the archaean Archaeoglobus fulgidus has been determined.

PRKCQ

Protein kinase C theta (PKC-θ) is an enzyme that in humans is encoded by the PRKCQ gene. PKC-θ, a member of serine/threonine kinases, is mainly expressed in hematopoietic cells with high levels in platelets and T lymphocytes, where plays a role in signal transduction. Different subpopulations of T cells vary in their requirements of PKC-θ, therefore PKC-θ is considered as a potential target for inhibitors in the context of immunotherapy.

PRKCI

Protein kinase C iota type is an enzyme that in humans is encoded by the PRKCI gene.

PIM1

Proto-oncogene serine/threonine-protein kinase Pim-1 is an enzyme that in humans is encoded by the PIM1 gene.

PRKCH

Protein kinase C eta type is an enzyme that in humans is encoded by the PRKCH gene.

PRKD3

Serine/threonine-protein kinase D3 (PKD3) or PKC-nu is an enzyme that in humans is encoded by the PRKD3 gene.

PRKACB Protein-coding gene in the species Homo sapiens

cAMP-dependent protein kinase catalytic subunit beta is an enzyme that in humans is encoded by the PRKACB gene.

PIK3C2B Protein-coding gene in the species Homo sapiens

Phosphatidylinositol-4-phosphate 3-kinase C2 domain-containing beta polypeptide is an enzyme that in humans is encoded by the PIK3C2B gene.

PLCD3

1-Phosphatidylinositol-4,5-bisphosphate phosphodiesterase delta-3 is an enzyme that in humans is encoded by the PLCD3 gene.

Dauricine Chemical compound

Dauricine is a plant metabolite, chemically classified as a phenol, an aromatic ether, and an isoquinoline alkaloid. It has been isolated from the Asian vine Menispermum dauricum, commonly known as Asian moonseed, and the North American vine Menispermum canadense, commonly known as Canadian moonseed. Scientists Tetsuji Kametani and Keiichiro Fukumoto of Japan are credited with being the first to synthesize dauricine in 1964, using both the Arndt-Eistert reaction and Bischler-Napieralski reaction to do so. Dauricine has been studied in vitro for its potential to inhibit cancer cell growth and to block cardiac transmembrane Na+, K+, and Ca2+ ion currents.

Atrolysin A is an enzyme that is one of six hemorrhagic toxins found in the venom of western diamondback rattlesnake. This endopeptidase has a length of 419 amino acid residues. The metalloproteinase disintegrin-like domain and the cysteine-rich domain of the enzyme are responsible for the enzyme's hemorrhagic effects on organisms via inhibition of platelet aggregation.

Tyrosine-protein kinase CSK Kinase enzyme that phosphorylates Src-family kinases

Tyrosine-protein kinase CSK also known as C-terminal Src kinase is an enzyme that, in humans, is encoded by the CSK gene. This enzyme phosphorylates tyrosine residues located in the C-terminal end of Src-family kinases (SFKs) including SRC, HCK, FYN, LCK, LYN and YES1.

<i>Ancistrocladus korupensis</i> Species of flowering plant

Ancistrocladus korupensis is a species of liana endemic to southwestern Cameroon and the neighbouring regions of Nigeria. The type locality is Korup National Park. The plant was identified as new to science in 1993 after pharmacologically intriguing alkaloids were found in its leaves.

References

  1. Schlauer, Jan; et al. (1 February 1998). "Characterization of Enzymes fromAncistrocladus (Ancistrocladaceae) and Triphyophyllum (Dioncophyllaceae) Catalyzing Oxidative Coupling of Naphthylisoquinoline Alkaloids to Michellamines". Archives of Biochemistry and Biophysics. 350 (1): 87–94. doi:10.1006/abbi.1997.0494. PMID   9466824.
  2. Zhang, Heping; Zembower, David; Chen, Zhidong (October 1997). "Structural analogues of the michellamine anti-HIV agents. Importance of the tetrahydroisoquinoline rings for biological activity". Bioorganic & Medicinal Chemistry Letters. 7 (20): 2687–2690. doi:10.1016/S0960-894X(97)10057-9.
  3. Bringmann, Gerhard; Götz, Roland; Keller, Paul A.; Walter, Rainer; Boyd, Michael R.; Lang, Fengrui; Garcia, Alberto; Walsh, John J.; Tellitu, Imanol; Bhaskar, K. Vijaya; Kelly, T. Ross (January 1998). "A Convergent Total Synthesis of the Michellamines". The Journal of Organic Chemistry. 63 (4): 1090–1097. doi:10.1021/jo971495m.
  4. 1 2 White, E.; Chao, W. R.; Ross, L. J.; Borhani, D. W.; Hobbs, P. D.; Upender, V.; Dawson, M. I. (1999). "Michellamine Alkaloids Inhibit Protein Kinase C". Archives of Biochemistry and Biophysics. 365 (1): 25–30. doi:10.1006/abbi.1999.1145. PMID   10222035.