This article contains content that is written like an advertisement .(May 2019) |
Ming-Ming Zhou | |
---|---|
Nationality | American |
Alma mater | East China University of Science and Technology Michigan Technological University Purdue University |
Known for | Bromodomain biology and drug discovery |
Scientific career | |
Fields | Structural and Chemical Biology Epigenetics Drug Discovery |
Institutions | Icahn School of Medicine at Mount Sinai Mount Sinai Medical Center |
Ming-Ming Zhou is an American scientist whose specification is structural and chemical biology, NMR spectroscopy, and drug design. He is the Dr. Harold and Golden Lamport Professor and Chairman of the Department of Pharmacological Sciences. [1] He is also the co-director of the Drug Discovery Institute at the Icahn School of Medicine at Mount Sinai and Mount Sinai Health System in New York City, as well as Professor of Sciences. [2] Zhou is an elected fellow of the American Association for the Advancement of Science. [3]
Zhou has published more than 180 research articles and is an inventor of 28 patents. His research has been funded by grants from federal, state and private research foundations including: the National Institutes of Health, the National Science Foundation, the New York State Stem Cell Science, the Institute for the Study of Aging, the American Foundation for AIDS Research, the American Cancer Society, GlaxoSmithKline, the Michael J. Fox Foundation, the Samuel Waxman Cancer Research Foundation, [4] and the Wellcome Trust. He serves on the board of directors at the New York Structural Biology Center, as well as on the editorial boards of ACS Medicinal Chemistry Letters, the Journal of Molecular Cell Biology, [5] and Cancer Research. [6]
Zhou earned his B.E. in chemical engineering from the East China University of Science and Technology (Shanghai, PRC) in 1984. He earned his M.S. in chemistry from the Michigan Technological University in 1988 and a Ph.D. in chemistry from Purdue University in Indiana in 1993. He completed his postdoctoral fellowship at Abbott Laboratories in Chicago, Illinois, then joined the faculty of the Mount Sinai Medical School in 1997.[ citation needed ]
Zhou's research is directed at better understanding the biology of epigenetic control of gene transcription of the human genome to attain both the underlying basic principles and rational design of novel chemical compounds that modulate gene expression in chromatin. His research studies have broad implications in human biology and disease, ranging from cell development, to stem cell self-renewal, differentiation, and re-programming to human cancer and inflammation, as well as neurodegenerative disorders. Among his major contributions to science are the Zhou Lab's discovery of the bromodomain as the acetyl-lysine binding domain ('chromatin reader') in gene transcription (Nature 1999) [7] and the first demonstrations of druggability and therapeutic potential of bromodomain proteins in gene transcription to treat a wide array of human diseases, including cancer and inflammation. [8] This concept has had transformative impacts in epigenetic drug discoveries in the pharmaceutical industry. [9] [10]
The Zhou Lab further discovered the tandem PHD finger of DPF3b as a first alternative to the bromodomain for acetyl-lysine binding (Nature 2010), [11] and the PAZ domain as the RNA binding domain in RNAi (Nature 2003). [12] His work also addresses the role of histone lysine methylation (Nature Cell Biol. 2008) [13] and long non-coding RNA in the epigenetic control of gene transcription in human stem cell maintenance and differentiation (Mol. Cell 2010). [14]
Zhou's work in rational design of chemical probes for mechanism-driven research led to the discovery of the HIV Tat/human co-activator PCAF interaction as a potential novel anti-HIV therapy target. [15] His group has developed chemical probes that modulate the transcriptional activity of human tumor suppressor p53 under stress conditions. His recent work includes the development of a novel gene transcriptional silencing technology. [16] Additional research discoveries include structural mechanisms as well as drug target discovery and validation for human cancers, particularly triple-negative breast cancer (TNBC), [17] [18] and inflammatory disorders such as inflammatory bowel disease (IBD) [19] [20] and multiple sclerosis. [21]
Current and past society memberships include The Harvey Society, the Biophysical Society, [22] the American Chemical Society, the American Society for Biochemistry and Molecular Biology, the American Association for the Advancement of Science and the New York Academy of Sciences. He serves on multiple editorial boards and reviews grants for the American Cancer Society, the American Heart Association, the National Institutes of Health and the National Science Foundation.[ citation needed ]
“Methods of Identifying Modulators of the FGF Receptors” | US 7,108,984 B2 |
“ZA Loops of Bromodomains” | US 7,589,167 B2 |
"Method of Suppressing Gene Transcription Through Histone Lysine Methylation" | US 9,249,190 B2; US 10,280,408 B2 |
"Cyclic Vinylogous Amides as Bromodomain Inhibitors" | US 9,884,806 B2; US 10,351,511 B2 |
"Methods of Modulating Bromodomains" | US 2004/0009613 A1 |
In biology, epigenetics is the study of heritable traits, or a stable change of cell function, that happen without changes to the DNA sequence. The Greek prefix epi- in epigenetics implies features that are "on top of" or "in addition to" the traditional genetic mechanism of inheritance. Epigenetics usually involves a change that is not erased by cell division, and affects the regulation of gene expression. Such effects on cellular and physiological phenotypic traits may result from environmental factors, or be part of normal development. They can lead to cancer.
Regulation of gene expression, or gene regulation, includes a wide range of mechanisms that are used by cells to increase or decrease the production of specific gene products. Sophisticated programs of gene expression are widely observed in biology, for example to trigger developmental pathways, respond to environmental stimuli, or adapt to new food sources. Virtually any step of gene expression can be modulated, from transcriptional initiation, to RNA processing, and to the post-translational modification of a protein. Often, one gene regulator controls another, and so on, in a gene regulatory network.
Histone acetyltransferases (HATs) are enzymes that acetylate conserved lysine amino acids on histone proteins by transferring an acetyl group from acetyl-CoA to form ε-N-acetyllysine. DNA is wrapped around histones, and, by transferring an acetyl group to the histones, genes can be turned on and off. In general, histone acetylation increases gene expression.
A bromodomain is an approximately 110 amino acid protein domain that recognizes acetylated lysine residues, such as those on the N-terminal tails of histones. Bromodomains, as the "readers" of lysine acetylation, are responsible in transducing the signal carried by acetylated lysine residues and translating it into various normal or abnormal phenotypes. Their affinity is higher for regions where multiple acetylation sites exist in proximity. This recognition is often a prerequisite for protein-histone association and chromatin remodeling. The domain itself adopts an all-α protein fold, a bundle of four alpha helices each separated by loop regions of variable lengths that form a hydrophobic pocket that recognizes the acetyl lysine.
Myc is a family of regulator genes and proto-oncogenes that code for transcription factors. The Myc family consists of three related human genes: c-myc (MYC), l-myc (MYCL), and n-myc (MYCN). c-myc was the first gene to be discovered in this family, due to homology with the viral gene v-myc.
RNA activation (RNAa) is a small RNA-guided and Argonaute (Ago)-dependent gene regulation phenomenon in which promoter-targeted short double-stranded RNAs (dsRNAs) induce target gene expression at the transcriptional/epigenetic level. RNAa was first reported in a 2006 PNAS paper by Li et al. who also coined the term "RNAa" as a contrast to RNA interference (RNAi) to describe such gene activation phenomenon. dsRNAs that trigger RNAa have been termed small activating RNA (saRNA). Since the initial discovery of RNAa in human cells, many other groups have made similar observations in different mammalian species including human, non-human primates, rat and mice, plant and C. elegans, suggesting that RNAa is an evolutionarily conserved mechanism of gene regulation.
Histone acetylation and deacetylation are the processes by which the lysine residues within the N-terminal tail protruding from the histone core of the nucleosome are acetylated and deacetylated as part of gene regulation.
Chromatin remodeling is the dynamic modification of chromatin architecture to allow access of condensed genomic DNA to the regulatory transcription machinery proteins, and thereby control gene expression. Such remodeling is principally carried out by 1) covalent histone modifications by specific enzymes, e.g., histone acetyltransferases (HATs), deacetylases, methyltransferases, and kinases, and 2) ATP-dependent chromatin remodeling complexes which either move, eject or restructure nucleosomes. Besides actively regulating gene expression, dynamic remodeling of chromatin imparts an epigenetic regulatory role in several key biological processes, egg cells DNA replication and repair; apoptosis; chromosome segregation as well as development and pluripotency. Aberrations in chromatin remodeling proteins are found to be associated with human diseases, including cancer. Targeting chromatin remodeling pathways is currently evolving as a major therapeutic strategy in the treatment of several cancers.
Enhancer of zeste homolog 2 (EZH2) is a histone-lysine N-methyltransferase enzyme encoded by EZH2 gene, that participates in histone methylation and, ultimately, transcriptional repression. EZH2 catalyzes the addition of methyl groups to histone H3 at lysine 27, by using the cofactor S-adenosyl-L-methionine. Methylation activity of EZH2 facilitates heterochromatin formation thereby silences gene function. Remodeling of chromosomal heterochromatin by EZH2 is also required during cell mitosis.
Cell division protein kinase 8 is an enzyme that in humans is encoded by the CDK8 gene.
Bromodomain-containing protein 4 is a protein that in humans is encoded by the BRD4 gene.
Bromodomain-containing protein 7 is a protein that in humans is encoded by the BRD7 gene.
Bromodomain-containing protein 3 (BRD3) also known as RING3-like protein (RING3L) is a protein that in humans is encoded by the BRD3 gene. This gene was identified based on its homology to the gene encoding the RING3 (BRD2) protein, a serine/threonine kinase. The gene maps to 9q34, a region which contains several major histocompatibility complex (MHC) genes.
Synthetic lethality is defined as a type of genetic interaction where the combination of two genetic events results in cell death or death of an organism. Although the foregoing explanation is wider than this, it is common when referring to synthetic lethality to mean the situation arising by virtue of a combination of deficiencies of two or more genes leading to cell death, whereas a deficiency of only one of these genes does not. In a synthetic lethal genetic screen, it is necessary to begin with a mutation that does not result in cell death, although the effect of that mutation could result in a differing phenotype, and then systematically test other mutations at additional loci to determine which, in combination with the first mutation, causes cell death arising by way of deficiency or abolition of expression.
HOXA11-AS lncRNA is a long non-coding RNA from the antisense strand in the homeobox A. The HOX gene contains four clusters. The sense strand of the HOXA gene codes for proteins. Alternative names for HOXA11-AS lncRNA are: HOXA-AS5, HOXA11S, HOXA11-AS1, HOXA11AS, or NCRNA00076. This gene is 3,885 nucleotides long and resides at chromosome 7 (7p15.2) and is transcribed from an independent gene promoter. Being a lncRNA, it is longer than 200 nucleotides in length, in contrast to regular non-coding RNAs.
BET inhibitors are a class of drugs that reversibly bind the bromodomains of Bromodomain and Extra-Terminal motif (BET) proteins BRD2, BRD3, BRD4, and BRDT, and prevent protein-protein interaction between BET proteins and acetylated histones and transcription factors.
Polypharmacology is the design or use of pharmaceutical agents that act on multiple targets or disease pathways.
Peregrin also known as bromodomain and PHD finger-containing protein 1 is a protein that in humans is encoded by the BRPF1 gene located on 3p26-p25. Peregrin is a multivalent chromatin regulator that recognizes different epigenetic marks and activates three histone acetyltransferases. BRPF1 contains two PHD fingers, one bromodomain and one chromo/Tudor-related Pro-Trp-Trp-Pro (PWWP) domain.
Giulio Maria Pasinetti is the Program Director of the Center on Molecular Integrative Neuroresilience and is the Saunders Family Chair in Neurology at the Icahn School of Medicine at Mount Sinai (ISMMS) in New York City. Pasinetti is a Professor of Neurology, Psychiatry, Neuroscience, and Geriatrics and Palliative Medicine at ISMMS.
Pharmacoepigenetics is an emerging field that studies the underlying epigenetic marking patterns that lead to variation in an individual's response to medical treatment.