Moniliformin

Last updated
Moniliformin
Moniliformin sodium.png
Names
IUPAC name
3-hydroxycyclobut-3-ene-1,2-dione
Other names
Semisquaric acid
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
UNII
  • InChI=1S/C4H2O3/c5-2-1-3(6)4(2)7/h1,5H Yes check.svgY
    Key: KGPQKNJSZNXOPV-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C4H2O3/c5-2-1-3(6)4(2)7/h1,5H
    Key: KGPQKNJSZNXOPV-UHFFFAOYAJ
  • O=C1C(\O)=C/C1=O
Properties
C4HNaO3
Molar mass 120.04 g/mol
AppearanceYellow crystalline solid
Melting point Decomposes at 345-355 °C without melting
very good
Related compounds
Related compounds
Squaric acid
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Moniliformin is an unusual mycotoxin, a feed contaminant that is lethal to fowl, especially ducklings.

Contents

Moniliformin is formed in many cereals by a number of Fusarium species that include Fusarium moniliforme , Fusarium avenaceum , Fusarium subglutinans , Fusarium proliferatum , Fusarium fujikuroi and others. It is mainly cardiotoxic and causes ventricular hypertrophy. Moniliformin actually causes competitive inhibition of the activity of pyruvate dehydrogenase complex of respiratory reaction, which prevents pyruvic acid, product of glycolysis, to convert to acetyl CoA. [1] [2] [3] Ultrastructural examination of right ventricular wall of 9 month old female mink (Mustela vison) fed acute doses of moniliformin (2.2 and 2.8 mg/kg diet) and sub-acute doses (1.5 to 3.2 mg/kg diet) reveals significant damage to myofiber, mitochondria, Z and M lines and sarcoplasmic reticulum as well as increased extracellular collagen deposition. Mink is considered most sensitive mammals to the toxicity of moniliformin. [4] Chemically speaking, it is the sodium salt of deoxy squaric acid

Physicochemical information

IUPAC name: 3-hydroxy-3-cyclobutene-1,2-dione. Solubility information: Moniliformin is soluble in water and polar solvents, such as methanol.
λmax: 226, 259 in methanol

See also

Sources and references

  1. Thiel, Pieter G (1978). "A molecular mechanism for the toxic action of moniliformin, a mycotoxin produced by fusarium moniliforme". Biochemical Pharmacology. 27 (4): 483–6. doi:10.1016/0006-2952(78)90381-7. PMID   629807.
  2. Moniliformin product page from Fermentek
  3. Moniliformin information leaflet by Romerlab
  4. Morgan MK, Fitzgerald SD, Rottinghaus GE, Bursian SJ and Aulerich RJ. 1999. Toxic effects to mink of moniliformin extracted from Fusarium fujikuroi culture material. Veterinary and Human Toxicology 1(1):pp-1-5

Related Research Articles

<span class="mw-page-title-main">Aconitine</span> Toxic plant alkaloid

Aconitine is an alkaloid toxin produced by various plant species belonging to the genus Aconitum, known also commonly by the names wolfsbane and monkshood. Monkshood is notorious for its toxic properties.

A mycotoxin is a toxic secondary metabolite produced by organisms of kingdom Fungi and is capable of causing disease and death in both humans and other animals. The term 'mycotoxin' is usually reserved for the toxic chemical products produced by fungi that readily colonize crops.

<span class="mw-page-title-main">Neotame</span> Chemical compound

Neotame, also known by the trade name Newtame, is a non-caloric artificial sweetener and aspartame analog by NutraSweet. By mass, it is 8000 times sweeter than sucrose. It has no notable off-flavors when compared to sucrose. It enhances original food flavors. It can be used alone, but is often mixed with other sweeteners to increase their individual sweetness and decrease their off-flavors. It is chemically somewhat more stable than aspartame. Its use can be cost effective in comparison to other sweeteners as smaller amounts of neotame are needed.

<span class="mw-page-title-main">Imidacloprid</span> Chemical compound

Imidacloprid is a systemic insecticide belonging to a class of chemicals called the neonicotinoids which act on the central nervous system of insects. The chemical works by interfering with the transmission of stimuli in the insect nervous system. Specifically, it causes a blockage of the nicotinergic neuronal pathway. By blocking nicotinic acetylcholine receptors, imidacloprid prevents acetylcholine from transmitting impulses between nerves, resulting in the insect's paralysis and eventual death. It is effective on contact and via stomach action. Because imidacloprid binds much more strongly to insect neuron receptors than to mammal neuron receptors, this insecticide is more toxic to insects than to mammals.

Fluoride toxicity is a condition in which there are elevated levels of the fluoride ion in the body. Although fluoride is safe for dental health at low concentrations, sustained consumption of large amounts of soluble fluoride salts is dangerous. Referring to a common salt of fluoride, sodium fluoride (NaF), the lethal dose for most adult humans is estimated at 5 to 10 g. Ingestion of fluoride can produce gastrointestinal discomfort at doses at least 15 to 20 times lower than lethal doses. Although it is helpful topically for dental health in low dosage, chronic ingestion of fluoride in large amounts interferes with bone formation. In this way, the most widespread examples of fluoride poisoning arise from consumption of ground water that is abnormally fluoride-rich.

<span class="mw-page-title-main">T-2 mycotoxin</span> Chemical compound

T-2 Mycotoxin is a trichothecene mycotoxin. It is a naturally occurring mold byproduct of Fusarium spp. fungus which is toxic to humans and animals. The clinical condition it causes is alimentary toxic aleukia and a host of symptoms related to organs as diverse as the skin, airway, and stomach. Ingestion may come from consumption of moldy whole grains. T-2 can be absorbed through human skin. Although no significant systemic effects are expected after dermal contact in normal agricultural or residential environments, local skin effects can not be excluded. Hence, skin contact with T-2 should be limited.

<span class="mw-page-title-main">Fumonisin B1</span> Chemical compound

Fumonisin B1 is the most prevalent member of a family of toxins, known as fumonisins, produced by several species of Fusarium molds, such as Fusarium verticillioides, which occur mainly in maize (corn), wheat and other cereals. Fumonisin B1 contamination of maize has been reported worldwide at mg/kg levels. Human exposure occurs at levels of micrograms to milligrams per day and is greatest in regions where maize products are the dietary staple.

<span class="mw-page-title-main">Gibberellic acid</span> Chemical compound

Gibberellic acid (also called gibberellin A3, GA, and GA3) is a hormone found in plants and fungi. Its chemical formula is C19H22O6. When purified, it is a white to pale-yellow solid.

<span class="mw-page-title-main">Zearalenone</span> Chemical compound

Zearalenone (ZEN), also known as RAL and F-2 mycotoxin, is a potent estrogenic metabolite produced by some Fusarium and Gibberella species. Specifically, the Gibberella zeae, the fungal species where zearalenone was initially detected, in its asexual/anamorph stage is known as Fusarium graminearum. Several Fusarium species produce toxic substances of considerable concern to livestock and poultry producers, namely deoxynivalenol, T-2 toxin, HT-2 toxin, diacetoxyscirpenol (DAS) and zearalenone. Particularly, ZEN is produced by Fusarium graminearum, Fusarium culmorum, Fusarium cerealis, Fusarium equiseti, Fusarium verticillioides, and Fusarium incarnatum. Zearalenone is the primary toxin that binds to estrogen receptors, causing infertility, abortion or other breeding problems, especially in swine. Often, ZEN is detected together with deoxynivalenol in contaminated samples and its toxicity needs to be considered in combination with the presence of other toxins.

<span class="mw-page-title-main">Citrinin</span> Chemical compound

Citrinin is a mycotoxin which is often found in food. It is a secondary metabolite produced by fungi that contaminates long-stored food and it causes different toxic effects, like nephrotoxic, hepatotoxic and cytotoxic effects. Citrinin is mainly found in stored grains, but sometimes also in fruits and other plant products.

<span class="mw-page-title-main">Dimethyl phthalate</span> Chemical compound

Dimethyl phthalate is an organic compound and phthalate ester. it is a colourless and oily liquid that is soluble in organic solvents, but which is only poorly soluble in water.

Patulin is an organic compound classified as a polyketide. It is a white powder soluble in acidic water and in organic solvents. It is a lactone that is heat-stable, so it is not destroyed by pasteurization or thermal denaturation. However, stability following fermentation is lessened. It is a mycotoxin produced by a variety of molds, in particular, Aspergillus and Penicillium and Byssochlamys. Most commonly found in rotting apples, the amount of patulin in apple products is generally viewed as a measure of the quality of the apples used in production. In addition, patulin has been found in other foods such as grains, fruits, and vegetables. It's presence is highly regulated.

Mycotoxicology is the branch of mycology that focuses on analyzing and studying the toxins produced by fungi, known as mycotoxins. In the food industry it is important to adopt measures that keep mycotoxin levels as low as practicable, especially those that are heat-stable. These chemical compounds are the result of secondary metabolism initiated in response to specific developmental or environmental signals. This includes biological stress from the environment, such as lower nutrients or competition for those available. Under this secondary path the fungus produces a wide array of compounds in order to gain some level of advantage, such as incrementing the efficiency of metabolic processes to gain more energy from less food, or attacking other microorganisms and being able to use their remains as a food source.

<span class="mw-page-title-main">Sterigmatocystin</span> Chemical compound

Sterigmatocystin is a polyketide mycotoxin produced by certain species of Aspergillus. The toxin is naturally found in some cheeses.

<i>Fusarium verticillioides</i> Fungus that harms maize/corn

Fusarium verticillioides is the most commonly reported fungal species infecting maize. Fusarium verticillioides is the accepted name of the species, which was also known as Fusarium moniliforme. The species has also been described as mating population A of the Fusarium fujikuroi species complex. F. verticllioides produces the mutagenic chemical compound fusarin C. F. verticillioides produces a group of disease-causing mycotoxins—fumonisins—on infected kernels.

<span class="mw-page-title-main">Vomitoxin</span> Fungal toxic chemical in grains

Vomitoxin, also known as deoxynivalenol (DON), is a type B trichothecene, an epoxy-sesquiterpenoid. This mycotoxin occurs predominantly in grains such as wheat, barley, oats, rye, and corn, and less often in rice, sorghum, and triticale. The occurrence of deoxynivalenol is associated primarily with Fusarium graminearum and F. culmorum, both of which are important plant pathogens which cause fusarium head blight in wheat and gibberella or fusarium ear blight in corn. The incidence of fusarium head blight is strongly associated with moisture at the time of flowering (anthesis), and the timing of rainfall, rather than the amount, is the most critical factor. However, increased amount of moisture towards harvest time has been associated with lower amount of vomitoxin in wheat grain due to leaching of toxins. Furthermore, deoxynivalenol contents are significantly affected by the susceptibility of cultivars towards Fusarium species, previous crop, tillage practices, and fungicide use. It occurs abundantly in grains in Norway due to heavy rainfall.

<span class="mw-page-title-main">Salicylate poisoning</span> Medical condition

Salicylate poisoning, also known as aspirin poisoning, is the acute or chronic poisoning with a salicylate such as aspirin. The classic symptoms are ringing in the ears, nausea, abdominal pain, and a fast breathing rate. Early on, these may be subtle, while larger doses may result in fever. Complications can include swelling of the brain or lungs, seizures, low blood sugar, or cardiac arrest.

<span class="mw-page-title-main">4-Methylcyclohexanemethanol</span> Chemical compound

4-Methylcyclohexanemethanol (MCHM, systematic name 4-methylcyclohexylmethanol) is an organic compound with the formula CH3C6H10CH2OH. Classified as a saturated higher alicyclic primary alcohol. Both cis and trans isomers exist, depending on the relative positions of the methyl (CH3) and hydroxymethyl (CH2OH) groups on the cyclohexane ring. Commercial samples of MCHM consists of a mixture of these isomers as well as other components that vary with the supplier.

<span class="mw-page-title-main">Nivalenol</span> Type of mycotoxin

Nivalenol (NIV) is a mycotoxin of the trichothecene group. In nature it is mainly found in fungi of the Fusarium species. The Fusarium species belongs to the most prevalent mycotoxin producing fungi in the temperate regions of the northern hemisphere, therefore making them a considerable risk for the food crop production industry.

<span class="mw-page-title-main">PR toxin</span> Chemical compound

Penicillin Roquefort Toxin is a mycotoxin produced by the fungi Penicillium roqueforti. In 1973, PR toxin was first partially characterized by isolating moldy corn on which the fungi had grown. Although its lethal dose was determined shortly after the isolation of the chemical, details of its toxic effects, were not fully clarified until 1982 in a study with mice, rats, anesthetized cats and preparations of isolated rat auricles.