Mycoprotein

Last updated
Mycoprotein prepared and served as a meat analogue Mycoprotein meat analogue (8470386696).jpg
Mycoprotein prepared and served as a meat analogue

Mycoprotein (lit. "protein from fungus"), also known as mycelium-based protein or fungal protein, is a form of single-cell protein derived from fungi for human consumption. [1]

Contents

Though these products derived from mycoprotein often are referred to as plant-based, this assortment is per definition wrong as the fungal kingdom, including mushroom-forming species as well as yeasts and molds, are separate from those of animals (Animalia) and plants (Plantae). [2] [3]

With that said, mycoprotein should neither be confused with mushroom-based products, as the part of fungi grown for mycoprotein is the vegetative growth of the fungi, called mycelium, which can be compared to the roots of the organism. [4] Metaphorically, the mushroom and the mycelium are as similar as a fruit is to the roots of its tree.

The Market

History

The discovery of mycoprotein was a result of "The Green Protein Revolution"-inspired British scientists looking for a sustainable alternative protein that could offset the global crisis fueled by population growth, food shortage and greenhouse gas emissions. Dr Tim Finnigan, former Chief Scientific Officer at Marlow Foods, has previously described how these scientists collected over 3000 soil organisms around the world before discovering Fusarium venenatum : a micro fungus that grows in filaments (long thread-like cells) and effectively transforms starch into a fibrous, meat-like, and protein-rich ingredient. In 1985, almost 20 years later, Marlow Foods became the first company to launch mycoprotein-based products on the market under the brand name Quorn. [1]

Today

With Quorn's patents lapsing and the needs for alternative protein increasing with the world population, increasing emissions and water usage, numerous start-up companies around the world have started developing mycoprotein-based ingredients and products, many using new strains and new technologies. The Swedish company Mycorena, producer of the trademarked mycoprotein ingredient Promyc™, and the Scottish company ENOUGH, producer of the mycoprotein ingredient ABUNDA, are two companies focusing on business-to-business supply on their take on a mycoprotein ingredient. Other companies, such as Spanish Libre and American MyForest Foods have instead chosen to launch mycoprotein-based products in retail, hence working business-to-consumer. [3]

Production & Synthesis

The production of mycoprotein takes place in vats, like in beer production. The fungi are grown under aerobic conditions, to which nitrogen, carbon and essential vitamins and minerals are supplied. Carbon dioxide is drawn from the vat. In the case of F. venenatum, glucose is supplied for carbon and ammonia for nitrogen. Parameters such as stirring, pH and temperature are also essential for optimal growth. [1]

At harvest, the fungus is washed and heat treated to reduce the ribonucleic acid (RNA) content according to safety regulations before undergoing further processing steps. [1] Different flavors and tastes can be added to the mycoprotein to add variety. [5]

A reproducible mutation occurs after 1,000 to 1,200 hours of cultivation in F. venenatum that greatly reduces the hypha length in the organism, which is considered unfavorable for production. Under normal conditions, this mutant strain will rapidly displace the parent strain. Replacing ammonia with nitrate as the source of nitrogen, or supplementing ammonium cultures with peptone, prevents this mutant strain from overtaking the product, but still allows development. Alternatively, the appearance of the mutant can be delayed by selection pressures such as nutrient concentrations or pH levels. [6]

Sensory, Nutrition & Health

Due to the root-like structure of the mycelium, the texture and nutrition of mycoprotein is very different from those of plants, leading to the possibility of creating vegetarian and vegan friendly products with the fibrous texture of meat. As it is high in protein and fiber, and low in fat, cholesterol, sodium and sugar, the composition aligns with current dietary guidelines. [1] [7] This nutritional advantage, as mentioned in the United Nations Environment Programme (2023), is why several studies have shown that consumption of mycoprotein has been associated with several health benefits, such as improved blood levels of cholesterol, sugar, and insulin. [8] The mechanism that links fiber content and mycoprotein's effect on managing glycemia and insulinemia is not entirely understood but is known to decrease the rate of glucose absorption and insulin secretion, whilst lowering insulin peaks by mitigating the maximum limit an amount of insulin can process glucose. [9]

Back in 2001, a review article published in the Food Technology Magazine summarized how a panel of experts evaluated the sustainability of mycoprotein (produced by Marlow Foods) for food use in the United States. During this evaluation, the protein quality was evaluated using both the FDA Protein Digestibility-Corrected Amino Acid Scoring (PDCAAS) as well as a human volunteer study. The evaluation showed that mycoprotein has an excellent pattern of amino acids, and a PDCAAS score of 0.91 based on an estimate of 78% digestibility, comparable to the scores of beef and soybean. In addition to this, the fatty acid pattern was concluded to be more similar to that of vegetable fat than animal fat, containing a low proportion of saturated fat and a high proportion of mono- and polyunsaturated fat. [10]

Also mentioned in this review, as well as in more recent articles, is that mycoprotein contains no or very low levels of phytic acids (also known as phytates), which are notorious anti-nutrients present in many plant-based protein sources. This means that in contrast to most beans and legumes, consumption of mycoprotein does not inhibit the absorption of essential trace elements and minerals like iron, zinc, calcium, and manganese. [10] [11]

It has also been found that mycoprotein produced by F. venenatum can consist of up to 42% protein while the fungal β-glucan present may also function as a prebiotic, stimulating the growth of health associated bacteria in the lower gut. [12] [13]

The texture and taste of mycoprotein may vary as different producers use different strains of fungi to produce their unique protein. For example, Nature's Fynd, a company founded in Chicago 2021, produce their Fy Protein™ from Fusarium yellowstonensis (also known as Fusarium strain flavolapis or Fusarium oxysporum MK7), an extremophile discovered in Yellowstone National Park, whilst Meati Inc. since 2022 produces their MushroomRoot™ from Neurospora crassa based on patented research by the Better Meat Co. [3] [14] [15] [16] The texture and taste are also influenced by different downstream technology, i.e., the treatment after harvesting the vats. Mycoprotein produced by F. venenatum has, for example, been described as a pale yellow solid with a faint taste of mushrooms. [17]

Allergies & Hypersensitivity

Hypersensitivity reactions caused by ingestion of mycoprotein is very rare, though it has previously occurred in people allergic to mold or other fungi. [18] [19] For most individuals, mycoprotein is safe to eat. [1] The fact is that 72.4% of allergic reactions and 67.6% of the gastrointestinal reactions that have been reported after ingestion of a Quorn product occurred on an individual's first consumption of Quorn's products, which is an indication of cross-allergenicity with other antigens. [20] There is, however, continual testing for concerns of allergic reactions, which can range from abdominal pain, nausea, and vomiting to severe asthmatic reactions, especially when crossed with inhaled mold spores. [6] [18] [21]

A few but not all strains involved in mycoprotein production are known to produce mycotoxins in very low concentrations, amongst others some strains of F. venenatum, which in Quorn's case is prohibited by continuous testing every 6th production hour. [1] Fusarium yellowstonensis, on the other hand, is an example of a strain that has been found to have low allergenic potential and no mycotoxins has been detectable. [22]

Law, Legislation & Recognition

Although mycoprotein is considered a new generation of alternative protein, most microorganisms used to produce mycoprotein have been used for decades, some for centuries, and do not fall under the Novel Food Regulation in the European Union. [23] Mycoprotein has been considered Generally Recognized as Safe (GRAS) by the Food and Drug Administration in the US since 2002. [24]

However, looking across the globe, mycoprotein has still not been fully recognized as the sufficient protein source it is, despite its nutritional and sustainable benefits and advantages. An open access article was published in early 2022 on the topic of the lack of a global uniformity when it comes to Food-Based Dietary Guidelines (FBDG). The author, reviewed by Marlow Foods, points out that the global protein guidance tends to be dichotomous and exclusively focuses on comparing animal and plant proteins, resulting in alternative proteins, such as fungal proteins, being overlooked. [7] Subsequently, the author calls for fungal protein to be included in the forthcoming EAT-Lancet 2.0 publication, due in 2024, and the Nordic Dietary Guidelines. [7] [25] [26]

This article is certainly not the only call for acknowledgement of fungal protein. In 2022, several companies pioneering for food sustainability united to form a new trade association: The Fungi Protein Association (FPA). One of the purposes of the association is to united advocate for mycoprotein in public policy. The founding members of the association include previous mentioned companies such as Quorn, ENOUGH, Mycorena and Nature's Fynd, but also companies as The Better Meat Co. and Prime Roots. [27] Two members of the FPA, Mycorena and Quorn, published in 2022 an open letter to urge the Nordic Nutrition Recommendations (NNR) committee to review their selection of recommended protein sources and recognize fungi-derived proteins in food-based dietary guidelines. [28] The NNR committee responded by including fungi as a source of non-animal protein in their nutrition recommendations published in June 2023. [26]

Environmental Impact

Several producers of mycoprotein have reported that production of mycoprotein has an environmental impact (including land-use, water consumption and carbon footprint) over 90% less than beef. [3] [29] Additionally, a study published in Nature 2022 found that replacing 20 percent of per-capita ruminant meat, such as beef, with fermentation derived microbial protein, such as mycoprotein, could cut global deforestation and carbon dioxide emissions by 50% in addition to lowering methane emissions. These numbers are under the assumption of consumer acceptance. [30]

See also

Related Research Articles

<span class="mw-page-title-main">Vegetarian cuisine</span> Food not including meat

Vegetarian cuisine is based on food that meets vegetarian standards by not including meat and animal tissue products.

<span class="mw-page-title-main">Mold</span> Wooly, dust-like fungal structure or substance

A mold or mould is one of the structures that certain fungi can form. The dust-like, colored appearance of molds is due to the formation of spores containing fungal secondary metabolites. The spores are the dispersal units of the fungi. Not all fungi form molds. Some fungi form mushrooms; others grow as single cells and are called microfungi.

<span class="mw-page-title-main">Peanut</span> Legume cultivated as a grain and oil crop

The peanut, also known as the groundnut, goober (US), pindar (US) or monkey nut (UK), is a legume crop grown mainly for its edible seeds. It is widely grown in the tropics and subtropics, important to both small and large commercial producers. It is classified as both a grain legume and, due to its high oil content, an oil crop. World annual production of shelled peanuts was 44 million tonnes in 2016, led by China with 38% of the world total. Atypically among legume crop plants, peanut pods develop underground (geocarpy) rather than above ground. With this characteristic in mind, the botanist Carl Linnaeus gave peanuts the specific epithet hypogaea, which means "under the earth".

An allergen is a type of antigen that produces an abnormally vigorous immune response in which the immune system fights off a perceived threat that would otherwise be harmless to the body. Such reactions are called allergies.

<span class="mw-page-title-main">Quorn</span> Meat substitute based on mycoprotein

Quorn is a brand of meat substitute products, or the company that makes them. Quorn originated in the UK and is sold primarily in Europe, but is available in 14 countries. The brand is owned by parent company Monde Nissin.

<span class="mw-page-title-main">Dog food</span> Food intended for consumption by dogs usually made from meat

Dog food is food specifically formulated and intended for consumption by dogs and other related canines. Dogs are considered to be omnivores with a carnivorous bias. They have the sharp, pointed teeth and shorter gastrointestinal tracts of carnivores, better suited for the consumption of meat than of vegetable substances, yet also have ten genes that are responsible for starch and glucose digestion, as well as the ability to produce amylase, an enzyme that functions to break down carbohydrates into simple sugars – something that obligate carnivores like cats lack. Dogs evolved the ability living alongside humans in agricultural societies, as they managed on scrap leftovers and excrement from humans.

<span class="mw-page-title-main">Meat alternative</span> Plant-based food made to resemble meat

A meat alternative or meat substitute, is a food product made from vegetarian or vegan ingredients, eaten as a replacement for meat. Meat alternatives typically approximate qualities of specific types of meat, such as mouthfeel, flavor, appearance, or chemical characteristics. Plant- and fungus-based substitutes are frequently made with soy, but may also be made from wheat gluten as in seitan, pea protein as in the Beyond Burger, or mycoprotein as in Quorn.

<span class="mw-page-title-main">Food allergy</span> Hypersensitivity reaction to a food

A food allergy is an abnormal immune response to food. The symptoms of the allergic reaction may range from mild to severe. They may include itchiness, swelling of the tongue, vomiting, diarrhea, hives, trouble breathing, or low blood pressure. This typically occurs within minutes to several hours of exposure. When the symptoms are severe, it is known as anaphylaxis. A food intolerance and food poisoning are separate conditions, not due to an immune response.

<i>Fusarium</i> Genus of fungi

Fusarium is a large genus of filamentous fungi, part of a group often referred to as hyphomycetes, widely distributed in soil and associated with plants. Most species are harmless saprobes, and are relatively abundant members of the soil microbial community. Some species produce mycotoxins in cereal crops that can affect human and animal health if they enter the food chain. The main toxins produced by these Fusarium species are fumonisins and trichothecenes. Despite most species apparently being harmless, some Fusarium species and subspecific groups are among the most important fungal pathogens of plants and animals.

Fusarium venenatum is a microfungus of the genus Fusarium that has a high protein content. One of its strains is used commercially for the production of the single cell protein mycoprotein Quorn.

<span class="mw-page-title-main">Peanut allergy</span> Type of food allergy caused by peanuts

Peanut allergy is a type of food allergy to peanuts. It is different from tree nut allergies, because peanuts are legumes and not true nuts. Physical symptoms of allergic reaction can include itchiness, hives, swelling, eczema, sneezing, asthma attack, abdominal pain, drop in blood pressure, diarrhea, and cardiac arrest. Anaphylaxis may occur. Those with a history of asthma are more likely to be severely affected.

<span class="mw-page-title-main">Soy allergy</span> Type of food allergy caused by soy

Soy allergy is a type of food allergy. It is a hypersensitivity to ingesting compounds in soy, causing an overreaction of the immune system, typically with physical symptoms, such as gastrointestinal discomfort, respiratory distress, or a skin reaction. Soy is among the eight most common foods inducing allergic reactions in children and adults. It has a prevalence of about 0.3% in the general population.

Single-cell proteins (SCP) or microbial proteins refer to edible unicellular microorganisms. The biomass or protein extract from pure or mixed cultures of algae, yeasts, fungi or bacteria may be used as an ingredient or a substitute for protein-rich foods, and is suitable for human consumption or as animal feeds. Industrial agriculture is marked by a high water footprint, high land use, biodiversity destruction, general environmental degradation and contributes to climate change by emission of a third of all greenhouse gases; production of SCP does not necessarily exhibit any of these serious drawbacks. As of today, SCP is commonly grown on agricultural waste products, and as such inherits the ecological footprint and water footprint of industrial agriculture. However, SCP may also be produced entirely independent of agricultural waste products through autotrophic growth. Thanks to the high diversity of microbial metabolism, autotrophic SCP provides several different modes of growth, versatile options of nutrients recycling, and a substantially increased efficiency compared to crops. A 2021 publication showed that photovoltaic-driven microbial protein production could use 10 times less land for an equivalent amount of protein compared to soybean cultivation.

<span class="mw-page-title-main">Fungus</span> Biological kingdom, separate from plants and animals

A fungus is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as one of the traditional eukaryotic kingdoms, along with Animalia, Plantae and either Protista or Protozoa and Chromista.

<span class="mw-page-title-main">Human interactions with fungi</span> Overview of human—fungi interactions

Human interactions with fungi include both beneficial uses, whether practical or symbolic, and harmful interactions such as when fungi damage crops, timber, food, or are pathogenic to animals.

<span class="mw-page-title-main">Allergies in cats</span>

Cats exposed to allergens may develop allergies or allergic reactions. Allergies tend to become evident and intensify over extended periods of time and can take years to develop. Some allergic diseases and allergies in cats include feline atopic dermatitis, flea allergy dermatitis, feline-mosquito hypersensitivity, and food-induced allergy. In the case of feline atopy, hypersensitivity to allergens is due to genetic predisposition. However, various allergies may arise due to environmental factors. Allergens, ingested, inhaled, or airborne, can be seasonal or non-seasonal, similar to allergies in humans. Suspected seasonal allergens include but are not limited to pollen, fleas, and mosquito bites; suspected non-seasonal allergens include but are not limited to plastic materials, food, dust, trees, and grass. After exposure to suspected allergens, symptoms may be immediate or delayed, arising within a few minutes to two hours. Symptoms can include both dermatological and gastrointestinal signs such as itchy skin, hair loss and excessive scratching. In cases of feline atopic dermatitis or atopy in cats, pruritic skin diseases may result; however, signs can also include miliary dermatitis, symmetrical alopecia, and lesions of the eosinophilic granuloma complex.

<span class="mw-page-title-main">Hypoallergenic dog food</span>

Hypoallergenic dog food diets are created for dogs that experience food-related allergies causing adverse effects to their physical health.Super Hypoallergenic is enzymatic hydrolyzed hypoallergenic ostrich protein. The molecules that usually become allergens are intact proteins or glycoproteins. Hypoallergenic dog food diets offer a variety of protein sources that are unique by using proteins that are not recognized by the dog's antibodies as being antigens, minimizing allergic reactions for example Ostrich meat, bones and sinews. Adding novel protein sources, such as novel meats that a dog or its ancestors have never been exposed to is one method. Novel proteins can also be created by chemically modifying well known protein sources using hydrolysis techniques, rendering proteins unrecognizable by the gastrointestinal tract. Not all antigens are specific to proteins, however, and it is possible for anything that the body ingests to become an allergen. Providing diets with a limited amount of ingredients can be used for diagnostic purposes, as well as for dogs who are allergic to the common ingredients that are used in pet food. Certain nutrients are commonly incorporated into hypoallergenic dog food to help alleviate the symptoms of an allergic reaction. These ingredients include omega-3 fatty acids, Vitamins A and E, zinc, novel carbohydrates, and fiber.

<span class="mw-page-title-main">Vegetarian and vegan dog diet</span> Adequate meat-free or animal-free nutrition

As in the human practice of veganism, vegan dog foods are those formulated with the exclusion of ingredients that contain or were processed with any part of an animal, or any animal byproduct. Vegan dog food may incorporate the use of fruits, vegetables, cereals, legumes including soya, nuts, vegetable oils, as well as any other non-animal based foods.

Protein detection is used for clinical diagnosis, treatment and biological research. Protein detection evaluates the concentration and amount of different proteins in a particular specimen. There are different methods and techniques to detect protein in different organisms. Protein detection has demonstrated important implications for clinical diagnosis, treatment and biological research. Protein detection technique has been utilized to discover protein in different category food, such as soybean (bean), walnut (nut), and beef (meat). Protein detection method for different type food vary on the basis of property of food for bean, nut and meat. Protein detection has different application in different field.

<span class="mw-page-title-main">Fungi in art</span> Direct and indirect influence of fungi in the arts

Fungi are a common theme or working material in art. They appear in many different artworks around the world, starting as early as around 8000 BCE. Fungi appear in nearly all art forms, including literature, paintings, and graphic arts; and more recently, contemporary art, music, photography, comic books, sculptures, video games, dance, cuisine, architecture, fashion, and design. There are a few exhibitions dedicated to fungi, and even an entire museum.

References

  1. 1 2 3 4 5 6 7 Finnigan, Tim JA; Wall, Benjamin T; Wilde, Peter J; Stephens, Francis B; Taylor, Steve L; Freedman, Marjorie R (2019). "Mycoprotein: The Future of Nutritious Nonmeat Protein, a Symposium Review". Current Developments in Nutrition. 3 (6): nzz021. doi:10.1093/cdn/nzz021. PMC   6554455 . PMID   31187084.
  2. Food and Drug Administration (2017). "Nutrition Information for Raw Vegetables". FDA. Retrieved 2023-12-20.
  3. 1 2 3 4 "Future of Fungi: Mycoprotein's Role as an Alternative Protein". Protein Directory. 2023-12-20. Retrieved 2023-12-20.
  4. Peberdy, John F. (1980), "Vegetative Growth of Filamentous Fungi", Developmental Microbiology, Boston, MA: Springer US, pp. 44–68, doi:10.1007/978-1-4613-3927-4_3, ISBN   978-1-4613-3929-8 , retrieved 2023-12-20
  5. Yoder WT, Christianson LM (February 1998). "Species-specific primers resolve members of Fusarium section Fusarium. Taxonomic status of the edible "Quorn" fungus reevaluated". Fungal Genetics and Biology. 23 (1): 68–80. doi:10.1006/fgbi.1997.1027. PMID   9501478.
  6. 1 2 Wiebe MG (March 2002). "Myco-protein from Fusarium venenatum: a well-established product for human consumption". Applied Microbiology and Biotechnology. 58 (4): 421–427. doi:10.1007/s00253-002-0931-x. PMID   11954786. S2CID   206934191.
  7. 1 2 3 Derbyshire, Emma (2022-02-23). "Food-Based Dietary Guidelines and Protein Quality Definitions—Time to Move Forward and Encompass Mycoprotein?". Foods. 11 (5): 647. doi: 10.3390/foods11050647 . ISSN   2304-8158. PMC   8909067 . PMID   35267280.
  8. United Nations Environment Programme (2023). Frontiers 2023. What’s Cooking? An assessment of the potential impacts of selected novel alternatives to conventional animal products. Nairobi; 2023 Dec [cited 2024 Jan 9].
  9. Denny A, Aisbitt B, Lunn J (2008-12-01). "Mycoprotein and health". Nutrition Bulletin. 33 (4): 298–310. doi:10.1111/j.1467-3010.2008.00730.x. ISSN   1471-9827.
  10. 1 2 Miller, S; Dwyer, J (2001). "Evaluating the Safety and Nutritional Value of Mycoprotein". Food Technology. 55 (7): 42–45.
  11. Mayer Labba, Inger-Cecilia; Steinhausen, Hannah; Almius, Linnéa; Bach Knudsen, Knud Erik; Sandberg, Ann-Sofie (2022-09-21). "Nutritional Composition and Estimated Iron and Zinc Bioavailability of Meat Substitutes Available on the Swedish Market". Nutrients. 14 (19): 3903. doi: 10.3390/nu14193903 . ISSN   2072-6643. PMC   9571894 . PMID   36235566.
  12. Williamson DA, Geiselman PJ, Lovejoy J, Greenway F, Volaufova J, Martin CK, et al. (January 2006). "Effects of consuming mycoprotein, tofu or chicken upon subsequent eating behaviour, hunger and safety". Appetite. 46 (1): 41–48. doi:10.1016/j.appet.2005.10.007. PMID   16364496. S2CID   25933762.
  13. Farsi DN, Gallegos JL, Koutsidis G, Nelson A, Finnigan TJ, Cheung W, et al. (April 2023). "Substituting meat for mycoprotein reduces genotoxicity and increases the abundance of beneficial microbes in the gut: Mycomeat, a randomised crossover control trial". European Journal of Nutrition. 62 (3): 1479–1492. doi:10.1007/s00394-023-03088-x. PMC   10030420 . PMID   36651990.
  14. "GRAS Notice 904". Food and Drug Administration . Retrieved 2023-11-16.
  15. "What is meati whole cuts' star ingredient, MushroomRoot?" . Retrieved 2023-09-27.
  16. Poinski, Megan (25 October 2022). "The Better Meat Co. patents mycelium it says 'does an even better job of mimicking' meat".
  17. Wiebe, M. (2002-03-01). "Myco-protein from Fusarium venenatum : a well-established product for human consumption". Applied Microbiology and Biotechnology. 58 (4): 421–427. doi:10.1007/s00253-002-0931-x. ISSN   0175-7598. PMID   11954786.
  18. 1 2 Hoff, Michael; Trüeb, Ralph M.; Ballmer-Weber, Barbara K.; Vieths, Stefan; Wuethrich, Brunello (2023). "Immediate-type hypersensitivity reaction to ingestion of mycoprotein (Quorn) in a patient allergic to molds caused by acidic ribosomal protein P2". Journal of Allergy and Clinical Immunology. 111 (5): 1106–1110. doi:10.1067/mai.2003.1339. PMID   12743577.
  19. Xing, Haiyan; Wang, Jianyong; Sun, Yuemei; Wang, Hongtian (2022-10-07). Batra, Lalit (ed.). "Recent Advances in the Allergic Cross-Reactivity between Fungi and Foods". Journal of Immunology Research. 2022: 1–10. doi: 10.1155/2022/7583400 . ISSN   2314-7156. PMC   9568318 . PMID   36249419.
  20. Jacobson, Michael F.; DePorter, Janna (2018). "Self-reported adverse reactions associated with mycoprotein (Quorn-brand) containing foods". Annals of Allergy, Asthma & Immunology. 120 (6): 626–630. doi:10.1016/j.anai.2018.03.020. PMID   29567357.
  21. Van Durme, Paul; Ceuppens, Jan L.; Cadot, Pascal (2003). "Allergy to ingested mycoprotein in a patient with mold spore inhalant allergy". Journal of Allergy and Clinical Immunology. 112 (2): 452–454. doi:10.1067/mai.2003.1613.
  22. Furey, Brian; Slingerland, Kathleen; Bauter, Mark R.; Dunn, Celeste; Goodman, Richard E.; Koo, Sophia (2022). "Safety evaluation of Fy Protein™ (Nutritional Fungi Protein), a macroingredient for human consumption". Food and Chemical Toxicology. 166: 113005. doi:10.1016/j.fct.2022.113005. PMID   35636642.
  23. Lähteenmäki-Uutela, Anu; Rahikainen, Moona; Lonkila, Annika; Yang, Baoru (2021-12-01). "Alternative proteins and EU food law". Food Control. 130: 108336. doi: 10.1016/j.foodcont.2021.108336 . ISSN   0956-7135.
  24. "GRN No. 91". U.S. Food and Drug Administration. Retrieved 2024-01-08.
  25. "About EAT-Lancet 2.0". EAT. Retrieved 2024-01-17.
  26. 1 2 Nordic Nutrition Recommendations 2023 Integrating Environmental Aspects. Copenhagen: Nordic Council of Ministers. 2023.
  27. "All-Star List of Global Industry Leaders Unite to Form Fungi Protein Association - vegconomist - the vegan business magazine". Vegconomist. 2022-11-07. Retrieved 2023-12-20.
  28. Nair, R; Bertacca, M. "Dear Nordic Nutrition Recommendations Committee". LinkedIn. Retrieved 2023-12-20.
  29. "ENOUGH - delicious, nutritious, sustainable". ENOUGH - delicious, nutritious, sustainable. Retrieved 2023-12-20.
  30. Humpenöder, Florian; Bodirsky, Benjamin Leon; Weindl, Isabelle; Lotze-Campen, Hermann; Linder, Tomas; Popp, Alexander (2022-05-05). "Projected environmental benefits of replacing beef with microbial protein". Nature. 605 (7908): 90–96. Bibcode:2022Natur.605...90H. doi:10.1038/s41586-022-04629-w. ISSN   0028-0836. PMID   35508780.

Further reading