Myopalladin

Last updated
MYPN
Identifiers
Aliases MYPN , CMD1DD, CMH22, MYOP, RCM4, myopalladin, NEM11
External IDs OMIM: 608517 MGI: 1916052 HomoloGene: 23778 GeneCards: MYPN
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001256267
NM_001256268
NM_032578

NM_182992

RefSeq (protein)

NP_001243196
NP_001243197
NP_115967

NP_892037

Location (UCSC) Chr 10: 68.09 – 68.21 Mb Chr 10: 62.95 – 63.04 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Myopalladin is a protein that in humans is encoded by the MYPN gene. Myopalladin is a muscle protein responsible for tethering proteins at the Z-disc and for communicating between the sarcomere and the nucleus in cardiac and skeletal muscle [5] [6] [7]

Contents

Structure

Myopalladin is a 145.2 kDa protein composed of 1320 amino acids. [8] [9] Myopalladin has five Ig-like repeats within the protein, and a proline-rich domain. Myopalladin binds the Src homology domain of nebulette and nebulin and tethers it to alpha-actinin via its C-terminal domain binding to the EF hand domains of alpha-actinin. The N-terminal region of myopalladin binds to the nuclear protein CARP, known to regulate gene expression in muscle. [5] It also has been shown to bind ANKRD23. [10]

Function

Myopalladin has dual subcellular localization, residing in both the nucleus and sarcomere/I-bands in muscle. Accordingly, myopalladin has functions in both sarcomere assembly and in control of gene expression. [5] Specifics of these functions were gleaned from studies involving MYPN mutants associated with various cardiomyopathies. The Q529X myopalladin mutant demonstrated incompetence in recruiting key binding partners such as desmin, alpha-actinin and CARP to the Z-disc during myofibrilogenesis. In contrast, the Y20C mutant resulted in decreased expression of binding partners. [11]

Clinical significance

Mutations in MYPN have been linked to nemaline myopathy, dilated cardiomyopathy, hypertrophic cardiomyopathy and restrictive cardiomyopathy. [11] [12] [13]

Related Research Articles

<span class="mw-page-title-main">Titin</span> Largest-known protein in human muscles

Titin is a protein that in humans is encoded by the TTN gene. Titin is a giant protein, greater than 1 µm in length, that functions as a molecular spring that is responsible for the passive elasticity of muscle. It comprises 244 individually folded protein domains connected by unstructured peptide sequences. These domains unfold when the protein is stretched and refold when the tension is removed.

<span class="mw-page-title-main">Nebulin</span> Protein-coding gene in the species Homo sapiens

Nebulin is an actin-binding protein which is localized to the thin filament of the sarcomeres in skeletal muscle. Nebulin in humans is coded for by the gene NEB. It is a very large protein and binds as many as 200 actin monomers. Because its length is proportional to thin filament length, it is believed that nebulin acts as a thin filament "ruler" and regulates thin filament length during sarcomere assembly and acts as the coats the actin filament. Other functions of nebulin, such as a role in cell signaling, remain uncertain.

<span class="mw-page-title-main">Nebulette</span> Protein-coding gene in the species Homo sapiens

Nebulette is a cardiac-specific isoform belonging to the nebulin family of proteins. It is encoded by the NEBL gene. This family is composed of 5 members: nebulette, nebulin, N-RAP, LASP-1 and LASP-2. Nebulette localizes to Z-discs of cardiac muscle and appears to regulate the length of actin thin filaments.

<span class="mw-page-title-main">Alpha-actinin-3</span> Mammalian protein found in Homo sapiens

Alpha-actinin-3, also known as alpha-actinin skeletal muscle isoform 3 or F-actin cross-linking protein, is a protein that in humans is encoded by the ACTN3 gene located on chromosome 11. All people have two copies (alleles) of this gene.

<span class="mw-page-title-main">Alpha-actinin-2</span> Protein-coding gene in the species Homo sapiens

Alpha-actinin-2 is a protein which in humans is encoded by the ACTN2 gene. This gene encodes an alpha-actinin isoform that is expressed in both skeletal and cardiac muscles and functions to anchor myofibrillar actin thin filaments and titin to Z-discs.

<span class="mw-page-title-main">Telethonin</span>

Telethonin, also known as Tcap, is a protein that in humans is encoded by the TCAP gene. Telethonin is expressed in cardiac and skeletal muscle at Z-discs and functions to regulate sarcomere assembly, T-tubule function and apoptosis. Telethonin has been implicated in several diseases, including limb-girdle muscular dystrophy, hypertrophic cardiomyopathy, dilated cardiomyopathy and idiopathic cardiomyopathy.

<span class="mw-page-title-main">MYOT</span> Mammalian protein found in Homo sapiens

Myotilin is a protein that in humans is encoded by the MYOT gene. Myotilin also known as TTID is a muscle protein that is found within the Z-disc of sarcomeres.

<span class="mw-page-title-main">Obscurin</span> Protein-coding gene in the species Homo sapiens

Obscurin is a protein that in humans is encoded by the OBSCN gene. Obscurin belongs to the family of giant sarcomeric signaling proteins that includes titin and nebulin. Obscurin is expressed in cardiac and skeletal muscle, and plays a role in the organization of myofibrils during sarcomere assembly. A mutation in the OBSCN gene has been associated with hypertrophic cardiomyopathy and altered obscurin protein properties have been associated with other muscle diseases.

<span class="mw-page-title-main">ANKRD2</span> Protein-coding gene in the species Homo sapiens

Ankyrin Repeat, PEST sequence and Proline-rich region (ARPP), also known as Ankyrin repeat domain-containing protein 2 is a protein that in humans is encoded by the ANKRD2 gene. ARPP is a member of the muscle ankyrin repeat proteins (MARP), which also includes CARP and DARP, and is highly expressed in cardiac and skeletal muscle and in other tissues. Expression of ARPP has been shown to be altered in patients with dilated cardiomyopathy and amyotrophic lateral sclerosis. A role for Ankrd2 in tumor progression and metastases spreading has also been described.

<span class="mw-page-title-main">SSX2IP</span> Protein-coding gene in the species Homo sapiens

Afadin- and alpha-actinin-binding protein is a protein that in humans is encoded by the SSX2IP gene. It has been shown that it functions together with WDR8 in centrosome maturation, ensuring proper spindle length and orientation. The SSX2IP-WDR8 complex additionally promotes ciliary vesicle docking during ciliogenesis.

<span class="mw-page-title-main">ANKRD1</span> Protein-coding gene in the species Homo sapiens

Ankyrin repeat domain-containing protein 1, or Cardiac ankyrin repeat protein is a protein that in humans is encoded by the ANKRD1 gene also known as CARP. CARP is highly expressed in cardiac and skeletal muscle, and is a transcription factor involved in development and under conditions of stress. CARP has been implicated in several diseases, including dilated cardiomyopathy, hypertrophic cardiomyopathy, and several skeletal muscle myopathies.

<span class="mw-page-title-main">NRAP</span> Protein-coding gene in the species Homo sapiens

Nebulin-related-anchoring protein(N-RAP) is a protein that in humans is encoded by the NRAP gene. N-RAP is a muscle-specific isoform belonging to the nebulin family of proteins. This family is composed of 5 members: N-RAP, nebulin, nebulette, LASP-1 and LASP-2. N-RAP is involved in both myofibrillar myogenesis during development and cell-cell connections in mature muscle.

<span class="mw-page-title-main">TRIM63</span> Protein-coding gene in the species Homo sapiens

E3 ubiquitin-protein ligase TRIM63, also known as "MuRF1", is an enzyme that in humans is encoded by the TRIM63 gene.

<span class="mw-page-title-main">LDB3</span> Protein-coding gene in the species Homo sapiens

LIM domain binding 3 (LDB3), also known as Z-band alternatively spliced PDZ-motif (ZASP), is a protein which in humans is encoded by the LDB3 gene. ZASP belongs to the Enigma subfamily of proteins and stabilizes the sarcomere during contraction, through interactions with actin in cardiac and skeletal muscles. Mutations in the ZASP gene has been associated with several muscular diseases.

<span class="mw-page-title-main">TXLNB</span> Protein-coding gene in the species Homo sapiens

Beta-taxilin is a protein that in humans is encoded by the TXLNB gene.

<span class="mw-page-title-main">SYT13</span> Protein-coding gene in the species Homo sapiens

Synaptotagmin-13 is a protein that in humans is encoded by the SYT13 gene.

<span class="mw-page-title-main">DEPTOR</span> Protein-coding gene in the species Homo sapiens

DEP domain-containing mTOR-interacting protein (DEPTOR) also known as DEP domain-containing protein 6 (DEPDC6) is a protein that in humans is encoded by the DEPTOR gene.

<span class="mw-page-title-main">ANKRD13C</span> Protein-coding gene in the species Homo sapiens

Ankyrin repeat domain-containing protein 13C is a protein that in humans is encoded by the ANKRD13C gene.

<span class="mw-page-title-main">TRIM55</span> Protein-coding gene in the species Homo sapiens

Tripartite motif-containing protein 55 is a protein that in humans is encoded by the TRIM55 gene.

<span class="mw-page-title-main">ANKRD23</span> Protein-coding gene in the species Homo sapiens

Ankyrin repeat domain-containing protein 23 is a protein that in humans is encoded by the ANKRD23 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000138347 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000020067 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 3 Bang ML, Mudry RE, McElhinny AS, Trombitás K, Geach AJ, Yamasaki R, Sorimachi H, Granzier H, Gregorio CC, Labeit S (April 2001). "Myopalladin, a novel 145-kilodalton sarcomeric protein with multiple roles in Z-disc and I-band protein assemblies". The Journal of Cell Biology. 153 (2): 413–27. doi:10.1083/jcb.153.2.413. PMC   2169455 . PMID   11309420.
  6. Ma K, Wang K (December 2002). "Interaction of nebulin SH3 domain with titin PEVK and myopalladin: implications for the signaling and assembly role of titin and nebulin". FEBS Letters. 532 (3): 273–8. doi: 10.1016/S0014-5793(02)03655-4 . PMID   12482578. S2CID   18125444.
  7. "Entrez Gene: MYPN myopalladin".
  8. Chung, Joon-Sub. "Protein Information - Myopalladin". Cardiac Organellar Protein Atlas Knowledgebase (COPaKB). NHLBI Proteomics Center at UCLA. Retrieved 2015-04-29.
  9. Zong NC, Li H, Li H, Lam MP, Jimenez RC, Kim CS, Deng N, Kim AK, Choi JH, Zelaya I, Liem D, Meyer D, Odeberg J, Fang C, Lu HJ, Xu T, Weiss J, Duan H, Uhlen M, Yates JR, Apweiler R, Ge J, Hermjakob H, Ping P (October 2013). "Integration of cardiac proteome biology and medicine by a specialized knowledgebase". Circulation Research. 113 (9): 1043–53. doi:10.1161/CIRCRESAHA.113.301151. PMC   4076475 . PMID   23965338.
  10. Miller MK, Bang ML, Witt CC, Labeit D, Trombitas C, Watanabe K, Granzier H, McElhinny AS, Gregorio CC, Labeit S (November 2003). "The muscle ankyrin repeat proteins: CARP, ankrd2/Arpp and DARP as a family of titin filament-based stress response molecules". Journal of Molecular Biology. 333 (5): 951–64. doi:10.1016/j.jmb.2003.09.012. PMID   14583192.
  11. 1 2 Purevjav E, Arimura T, Augustin S, Huby AC, Takagi K, Nunoda S, Kearney DL, Taylor MD, Terasaki F, Bos JM, Ommen SR, Shibata H, Takahashi M, Itoh-Satoh M, McKenna WJ, Murphy RT, Labeit S, Yamanaka Y, Machida N, Park JE, Alexander PM, Weintraub RG, Kitaura Y, Ackerman MJ, Kimura A, Towbin JA (May 2012). "Molecular basis for clinical heterogeneity in inherited cardiomyopathies due to myopalladin mutations". Human Molecular Genetics. 21 (9): 2039–53. doi:10.1093/hmg/dds022. PMC   3315208 . PMID   22286171.
  12. Duboscq-Bidot L, Xu P, Charron P, Neyroud N, Dilanian G, Millaire A, Bors V, Komajda M, Villard E (January 2008). "Mutations in the Z-band protein myopalladin gene and idiopathic dilated cardiomyopathy". Cardiovascular Research. 77 (1): 118–25. doi: 10.1093/cvr/cvm015 . PMID   18006477.
  13. Laitila, J, Wallgren, C (2021). "Recent advances in nemaline myopathy". Neuromuscular Disorders. 31 (10): 955–967. doi: 10.1016/j.nmd.2021.07.012 . hdl: 10138/337407 . PMID   34561123.

Further reading