N-Acetylanthranilic acid

Last updated
N-Acetylanthranilic acid
N-acetylanthranilic Acid N-acetylanthranilic acid.svg
N-acetylanthranilic Acid
Ball-and-stick model of N-Acetylanthranilic acid N-Acetylanthranilic-acid-from-xtal-Mercury-3D-bs.png
Ball-and-stick model of N-Acetylanthranilic acid
Names
Preferred IUPAC name
2-Acetamidobenzoic acid
Other names
2-Acetamidobenzoic acid; 2-Carboxyacetanilide; o-Acetoaminobenozic acid; Acetylanthranilic acid; 2-(Acetylamino)benzoic acid
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.001.741 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C9H9NO3/c1-6(11)10-8-5-3-2-4-7(8)9(12)13/h2-5H,1H3,(H,10,11)(H,12,13) Yes check.svgY
    Key: QSACCXVHEVWNMX-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C9H9NO3/c1-6(11)10-8-5-3-2-4-7(8)9(12)13/h2-5H,1H3,(H,10,11)(H,12,13)
    Key: QSACCXVHEVWNMX-UHFFFAOYAX
  • CC(=O)NC1=CC=CC=C1C(=O)O
Properties
C9H9NO3
Molar mass 179.175 g·mol−1
AppearanceSlightly beige solid
Density 1.36 g/mL
Melting point 184 to 186 °C (363 to 367 °F; 457 to 459 K)
Boiling point 399 °C (750 °F; 672 K)
Hazards
GHS labelling:
GHS-pictogram-exclam.svg
Lethal dose or concentration (LD, LC):
Oral, mouse = 1114 mg/kg
Safety data sheet (SDS) -
Legal status
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

N-Acetylanthranilic acid is an organic compound with the molecular formula C9H9NO3. It is an intermediate product in catabolism of quinaldine in Arthrobacter sp., and is further metabolized to anthranilic acid. [2] [3]

N-Acetylanthranilic acid can be synthesized from 2-bromoacetanilide via palladium-catalyzed carbonylation in tri-n-butylamine-water at 110–130 °C, under 3 atm of carbon monoxide. [4] In the laboratory, it can be easily synthesized from anthranilic acid and acetic anhydride.

N-Acetylanthranilic acid exhibits triboluminescence when crushed. [5] The fractured crystals have large electrical potentials between areas of high and low charge. When the electrons suddenly migrate to neutralize these potentials, flashes of deep blue light are created.

In the United States, it is a Drug Enforcement Administration-controlled List I chemical, [6] because it has been used in the synthesis of methaqualone.

See also

Related Research Articles

<span class="mw-page-title-main">Piperidine</span> Chemical compound

Piperidine is an organic compound with the molecular formula (CH2)5NH. This heterocyclic amine consists of a six-membered ring containing five methylene bridges (–CH2–) and one amine bridge (–NH–). It is a colorless liquid with an odor described as objectionable, typical of amines. The name comes from the genus name Piper, which is the Latin word for pepper. Although piperidine is a common organic compound, it is best known as a representative structure element within many pharmaceuticals and alkaloids, such as natural-occurring solenopsins.

Combinatorial chemistry comprises chemical synthetic methods that make it possible to prepare a large number of compounds in a single process. These compound libraries can be made as mixtures, sets of individual compounds or chemical structures generated by computer software. Combinatorial chemistry can be used for the synthesis of small molecules and for peptides.

Cubane is a synthetic hydrocarbon compound with the formula C8H8. It consists of eight carbon atoms arranged at the corners of a cube, with one hydrogen atom attached to each carbon atom. A solid crystalline substance, cubane is one of the Platonic hydrocarbons and a member of the prismanes. It was first synthesized in 1964 by Philip Eaton and Thomas Cole. Before this work, Eaton believed that cubane would be impossible to synthesize due to the "required 90 degree bond angles". The cubic shape requires the carbon atoms to adopt an unusually sharp 90° bonding angle, which would be highly strained as compared to the 109.45° angle of a tetrahedral carbon. Once formed, cubane is quite kinetically stable, due to a lack of readily available decomposition paths. It is the simplest hydrocarbon with octahedral symmetry.

In organic chemistry, a nitrile is any organic compound that has a −C≡N functional group. The name of the compound is composed of a base, which includes the carbon of the −C≡N, suffixed with "nitrile", so for example CH3CH2C≡N is called "propionitrile". The prefix cyano- is used interchangeably with the term nitrile in industrial literature. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. Nitrile rubber is also widely used as automotive and other seals since it is resistant to fuels and oils. Organic compounds containing multiple nitrile groups are known as cyanocarbons.

<span class="mw-page-title-main">Lysergic acid</span> Precursor for a range of ergoline alkaloids produced by the ergot fungus

Lysergic acid, also known as D-lysergic acid and (+)-lysergic acid, is a precursor for a wide range of ergoline alkaloids that are produced by the ergot fungus and found in the seeds of Turbina corymbosa (ololiuhqui), Argyreia nervosa, and Ipomoea tricolor.

The Suzuki reaction or Suzuki coupling is an organic reaction that uses a palladium complex catalyst to cross-couple a boronic acid to an organohalide. It was first published in 1979 by Akira Suzuki, and he shared the 2010 Nobel Prize in Chemistry with Richard F. Heck and Ei-ichi Negishi for their contribution to the discovery and development of noble metal catalysis in organic synthesis. This reaction is sometimes telescoped with the related Miyaura borylation; the combination is the Suzuki–Miyaura reaction. It is widely used to synthesize polyolefins, styrenes, and substituted biphenyls.

<span class="mw-page-title-main">Orthocarbonic acid</span> Hypothetical compound with formula C(OH)4

Orthocarbonic acid, carbon hydroxide, methanetetrol is the name given to a hypothetical compound with the chemical formula H4CO4 or C(OH)4. Its molecular structure consists of a single carbon atom bonded to four hydroxyl groups. It would be therefore a fourfold alcohol. In theory it could lose four protons to give the hypothetical oxocarbon anion orthocarbonateCO4−4, and is therefore considered an oxoacid of carbon.

<span class="mw-page-title-main">Polyyne</span> Any organic compound with alternating C–C and C≡C bonds

A polyyne is any organic compound with alternating single and triple bonds; that is, a series of consecutive alkynes, (−C≡C−)n with n greater than 1. These compounds are also called polyacetylenes, especially in the natural products and chemical ecology literature, even though this nomenclature more properly refers to acetylene polymers composed of alternating single and double bonds (−CR=CR′−)n with n greater than 1. They are also sometimes referred to as oligoynes, or carbinoids after "carbyne" (−C≡C−), the hypothetical allotrope of carbon that would be the ultimate member of the series. The synthesis of this substance has been claimed several times since the 1960s, but those reports have been disputed. Indeed, the substances identified as short chains of "carbyne" in many early organic synthesis attempts would be called polyynes today.

<span class="mw-page-title-main">Chiral auxiliary</span> Stereogenic group placed on a molecule to encourage stereoselectivity in reactions

In stereochemistry, a chiral auxiliary is a stereogenic group or unit that is temporarily incorporated into an organic compound in order to control the stereochemical outcome of the synthesis. The chirality present in the auxiliary can bias the stereoselectivity of one or more subsequent reactions. The auxiliary can then be typically recovered for future use.

<span class="mw-page-title-main">Pentacene</span> Hydrocarbon compound (C22H14) made of 5 fused benzene rings

Pentacene is a polycyclic aromatic hydrocarbon consisting of five linearly-fused benzene rings. This highly conjugated compound is an organic semiconductor. The compound generates excitons upon absorption of ultra-violet (UV) or visible light; this makes it very sensitive to oxidation. For this reason, this compound, which is a purple powder, slowly degrades upon exposure to air and light.

<span class="mw-page-title-main">Peterson olefination</span> Chemical reaction

The Peterson olefination is the chemical reaction of α-silyl carbanions with ketones to form a β-hydroxysilane (2) which eliminates to form alkenes (3).

<span class="mw-page-title-main">2-Pyridone</span> Chemical compound

2-Pyridone is an organic compound with the formula C
5
H
4
NH(O)
. It is a colourless solid. It is well known to form hydrogen bonded dimers and it is also a classic case of a compound that exists as tautomers.

<span class="mw-page-title-main">Anthranilic acid</span> Chemical compound

Anthranilic acid is an aromatic acid with the formula C6H4(NH2)(CO2H) and has a sweetish taste. The molecule consists of a benzene ring, ortho-substituted with a carboxylic acid and an amine. As a result of containing both acidic and basic functional groups, the compound is amphoteric. Anthranilic acid is a white solid when pure, although commercial samples may appear yellow. The anion [C6H4(NH2)(CO2)], obtained by the deprotonation of anthranilic acid, is called anthranilate. Anthranilic acid was once thought to be a vitamin and was referred to as vitamin L1 in that context, but it is now known to be non-essential in human nutrition.

The Rubottom oxidation is a useful, high-yielding chemical reaction between silyl enol ethers and peroxyacids to give the corresponding α-hydroxy carbonyl product. The mechanism of the reaction was proposed in its original disclosure by A.G. Brook with further evidence later supplied by George M. Rubottom. After a Prilezhaev-type oxidation of the silyl enol ether with the peroxyacid to form the siloxy oxirane intermediate, acid-catalyzed ring-opening yields an oxocarbenium ion. This intermediate then participates in a 1,4-silyl migration to give an α-siloxy carbonyl derivative that can be readily converted to the α-hydroxy carbonyl compound in the presence of acid, base, or a fluoride source.

<span class="mw-page-title-main">Metazocine</span> Opioid analgesic

Metazocine is an opioid analgesic related to pentazocine. While metazocine has significant analgesic effects, mediated through a mixed agonist–antagonist action at the mu opioid receptor, its clinical use is limited by dysphoric and hallucinogenic effects which are most likely caused by activity at kappa opioid receptors and/or sigma receptors.

<span class="mw-page-title-main">Imidazole-1-sulfonyl azide</span> Chemical compound

Imidazole-1-sulfonyl azide is an organic azide compound that can be used as an alternative organic synthesis reagent to trifluoromethanesulfonyl azide. It is an explosive colorless liquid, but some of its organic-soluble salts can be safely handled and stored as a solid.

<span class="mw-page-title-main">Indole</span> Chemical compound

Indole is an organic compound with the formula C6H4CCNH3. Indole is classified as an aromatic heterocycle. It has a bicyclic structure, consisting of a six-membered benzene ring fused to a five-membered pyrrole ring. Indoles are derivatives of indole where one or more of the hydrogen atoms have been replaced by substituent groups. Indoles are widely distributed in nature, most notably as amino acid tryptophan and neurotransmitter serotonin.

The Buchner ring expansion is a two-step organic C-C bond forming reaction used to access 7-membered rings. The first step involves formation of a carbene from ethyl diazoacetate, which cyclopropanates an aromatic ring. The ring expansion occurs in the second step, with an electrocyclic reaction opening the cyclopropane ring to form the 7-membered ring.

Metal-catalyzed C–H borylation reactions are transition metal catalyzed organic reactions that produce an organoboron compound through functionalization of aliphatic and aromatic C–H bonds and are therefore useful reactions for carbon–hydrogen bond activation. Metal-catalyzed C–H borylation reactions utilize transition metals to directly convert a C–H bond into a C–B bond. This route can be advantageous compared to traditional borylation reactions by making use of cheap and abundant hydrocarbon starting material, limiting prefunctionalized organic compounds, reducing toxic byproducts, and streamlining the synthesis of biologically important molecules. Boronic acids, and boronic esters are common boryl groups incorporated into organic molecules through borylation reactions. Boronic acids are trivalent boron-containing organic compounds that possess one alkyl substituent and two hydroxyl groups. Similarly, boronic esters possess one alkyl substituent and two ester groups. Boronic acids and esters are classified depending on the type of carbon group (R) directly bonded to boron, for example alkyl-, alkenyl-, alkynyl-, and aryl-boronic esters. The most common type of starting materials that incorporate boronic esters into organic compounds for transition metal catalyzed borylation reactions have the general formula (RO)2B-B(OR)2. For example, bis(pinacolato)diboron (B2Pin2), and bis(catecholato)diborane (B2Cat2) are common boron sources of this general formula.

<i>N</i>-Hydroxyphthalimide Chemical compound

N-Hydroxyphthalimide is the organic compound with the formula C6H4(CO)2NOH. A white or yellow solid, it is a derivative of phthalimide. The compound is as a catalyst in the synthesis of other organic compounds. It is soluble in water and organic solvents such as acetic acid, ethyl acetate and acetonitrile.

References

  1. Anvisa (2023-03-31). "RDC Nº 784 - Listas de Substâncias Entorpecentes, Psicotrópicas, Precursoras e Outras sob Controle Especial" [Collegiate Board Resolution No. 784 - Lists of Narcotic, Psychotropic, Precursor, and Other Substances under Special Control] (in Brazilian Portuguese). Diário Oficial da União (published 2023-04-04). Archived from the original on 2023-08-03. Retrieved 2023-08-15.
  2. Hund HK, de Beyer A, Lingens F (1990). "Microbial metabolism of quinoline and related compounds. VI. Degradation of quinaldine by Arthrobacter sp". Biol Chem Hoppe-Seyler . 371 (10): 1005–1008. doi:10.1515/bchm3.1990.371.2.1005. PMID   2076195.
  3. Overhage J, et al. (2005). "Identification of large linear plasmids in Arthrobacter spp. encoding the degradation of quinaldine to anthranilate". Microbiology . 151 (2): 491–500. doi: 10.1099/mic.0.27521-0 . PMID   15699198.
  4. Donald Valentine; Jefferson W. Tilley; Ronald A. LeMahieu (1981). "Practical, catalytic synthesis of anthranilic acids". Journal of Organic Chemistry . 46 (22): 4614–4617. doi:10.1021/jo00335a075.
  5. Erikson J (Oct 1972). "N-acetylanthranilic acid. A highly triboluminescent material". J Chem Educ. 49 (10): 688. doi:10.1021/ed049p688.
  6. "PART 1310 - Section 1310.02 Substances covered". www.deadiversion.usdoj.gov.