NLRP2

Last updated
NLRP2
Identifiers
Aliases NLRP2 , CLR19.9, NALP2, NBS1, PAN1, PYPAF2, NLR family, pyrin domain containing 2, NLR family pyrin domain containing 2
External IDs OMIM: 609364 MGI: 3041206 HomoloGene: 56789 GeneCards: NLRP2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_017852
NM_001174081
NM_001174082
NM_001174083
NM_001348003

NM_177690

RefSeq (protein)

NP_001167552
NP_001167553
NP_001167554
NP_060322
NP_001334932

n/a

Location (UCSC) Chr 19: 54.95 – 55 Mb Chr 7: 5.3 – 5.35 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

NACHT, LRR and PYD domains-containing protein 2 is a protein that in humans is encoded by the NLRP2 gene. [5] [6] [7]

NALP proteins, such as NALP2, are characterized by an N-terminal pyrin domain (PYD) and are involved in the activation of caspase-1 (CASP1; MIM 147678) by Toll-like receptors(see TLR4). They may also be involved in protein complexes that activate proinflammatory caspases (Tschopp et al., 2003).[supplied by OMIM] [7] [8]

Function

The NLRP2 gene is one of the family members of nucleotide-binding and leucine-rich repeat receptor (NLR). Information from many literature sources indicates that an N-terminal pyrin effector domain (PYD) is one of the components of the NLRP2 gene. Other components include a centrally-located nucleotide-binding and oligomerization domain (NACHT) and C-terminal leucine-rich repeats (LRR). [9] The products of NLRP2 gene are known to interact with IkB kinase (IKK) complex components. It can also regulate the activities of both caspase-1 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB). The pyrin domain is essential and adequate to suppress the activities of NF-kB (Minkiewicz, de Rivero Vaccari and Keane 1113). An allelic variant (rs147585490) is known to block the NF-kB transcriptional activities. NLRP2 gene is one of the NLR family; it is believed to contribute to the regulation of immune responses (Minkiewicz, de Rivero Vaccari and Keane 1121). Although it is not well understood, the NLRP2 gene is responsible for maintaining fertility in females and contributes to the normal birth. The NPRP2 gene encodes for a human protein known as "NACHT, LRR and PYD domains-containing protein 2". [10] NALP2, which is one of the NALP proteins, has an N-terminal pyrin characterization also encoded as MIM 608107 and PYD domain. [11] The NALP2 protein has a role in the activation process of caspase-1, which is encoded as CASP1; MIM 147678. The activation process occurs through the Toll-like receptors. The NALP2 may also take part in protein complexes, which initiates the activation of proinflammatory caspases. [12] NLR family regulates the functioning of the immune system, which technically compromises the normal functions of the body including reproduction.

Discovery

The NLR gene family where the NLRP2 gene belongs was first extracted from zebrafish, which is a common specimen for the study of immune systems. The NLRP2 gene is believed to have originated from the NLR gene family through mutation. [13] The mutation was initiated by the need for organisms to fit a dynamic environment and diversification in the evolution stages. [14] Also, the mutation of the NLR gene family proteins was also due to the ability of pathogens to subvert the defense mechanism of the host. [15] Therefore, the organisms were forced to device new ways of detecting and counteracting the effects of the resistant pathogens. [16] The evolution of the NLR proteins defines the origin of the NLRP2 gene. The NLRP2 gene is now an innate immune sensor for pathogens and sterile stress signal (SSS) in multi-cellular organisms.

Mutation and infertility

The deficiency of NLRP2 gene results in the inhibition of the activation of oocytes. [17] The NLRP2 gene is exclusively expressed in oocytes. Therefore, it regulates the quality of the oocytes, which explains its relation to infertility in females. [18]

Related Research Articles

Pattern recognition receptors (PRRs) play a crucial role in the proper function of the innate immune system. PRRs are germline-encoded host sensors, which detect molecules typical for the pathogens. They are proteins expressed mainly by cells of the innate immune system, such as dendritic cells, macrophages, monocytes, neutrophils, as well as by epithelial cells, to identify two classes of molecules: pathogen-associated molecular patterns (PAMPs), which are associated with microbial pathogens, and damage-associated molecular patterns (DAMPs), which are associated with components of host's cells that are released during cell damage or death. They are also called primitive pattern recognition receptors because they evolved before other parts of the immune system, particularly before adaptive immunity. PRRs also mediate the initiation of antigen-specific adaptive immune response and release of inflammatory cytokines.

<span class="mw-page-title-main">CARD (domain)</span> Interaction motifs found in a wide array of proteins

Caspase recruitment domains, or caspase activation and recruitment domains (CARDs), are interaction motifs found in a wide array of proteins, typically those involved in processes relating to inflammation and apoptosis. These domains mediate the formation of larger protein complexes via direct interactions between individual CARDs. CARDs are found on a strikingly wide range of proteins, including helicases, kinases, mitochondrial proteins, caspases, and other cytoplasmic factors.

<span class="mw-page-title-main">Caspase 1</span> Protein-coding gene in the species Homo sapiens

Caspase-1/Interleukin-1 converting enzyme (ICE) is an evolutionarily conserved enzyme that proteolytically cleaves other proteins, such as the precursors of the inflammatory cytokines interleukin 1β and interleukin 18 as well as the pyroptosis inducer Gasdermin D, into active mature peptides. It plays a central role in cell immunity as an inflammatory response initiator. Once activated through formation of an inflammasome complex, it initiates a proinflammatory response through the cleavage and thus activation of the two inflammatory cytokines, interleukin 1β (IL-1β) and interleukin 18 (IL-18) as well as pyroptosis, a programmed lytic cell death pathway, through cleavage of Gasdermin D. The two inflammatory cytokines activated by Caspase-1 are excreted from the cell to further induce the inflammatory response in neighboring cells.

<span class="mw-page-title-main">NLRP3</span> Human protein and coding gene

NLR family pyrin domain containing 3 (NLRP3), is a protein that in humans is encoded by the NLRP3 gene located on the long arm of chromosome 1.

Pyroptosis is a highly inflammatory form of lytic programmed cell death that occurs most frequently upon infection with intracellular pathogens and is likely to form part of the antimicrobial response. This process promotes the rapid clearance of various bacterial, viral, fungal and protozoan infections by removing intracellular replication niches and enhancing the host's defensive responses. Pyroptosis can take place in immune cells and is also reported to occur in keratinocytes and some epithelial cells.

<span class="mw-page-title-main">PYCARD</span> Human protein and coding gene

PYCARD, often referred to as ASC, is a protein that in humans is encoded by the PYCARD gene. It is localized mainly in the nucleus of monocytes and macrophages. In case of pathogen infection, however, it relocalizes rapidly to the cytoplasm, perinuclear space, endoplasmic reticulum and mitochondria and it is a key adaptor protein in activation of the inflammasome.

<span class="mw-page-title-main">NLRP1</span> Human protein-coding gene

NLRP1 encodes NACHT, LRR, FIIND, CARD domain and PYD domains-containing protein 1 in humans. NLRP1 was the first protein shown to form an inflammasome. NLRP1 is expressed by a variety of cell types, which are predominantly epithelial or hematopoietic. The expression is also seen within glandular epithelial structures including the lining of the small intestine, stomach, airway epithelia and in hairless or glabrous skin. NLRP1 polymorphisms are associated with skin extra-intestinal manifestations in CD. Its highest expression was detected in human skin, in psoriasis and in vitiligo. Polymorphisms of NLRP1 were found in lupus erythematosus and diabetes type 1. Variants of mouse NLRP1 were found to be activated upon N-terminal cleavage by the protease in anthrax lethal factor.

<span class="mw-page-title-main">NLRP7</span> Protein-coding gene in the species Homo sapiens

NACHT, LRR and PYD domains-containing protein 7 is a protein that in humans is encoded by the NLRP7 gene.

<span class="mw-page-title-main">Caspase recruitment domain-containing protein 8</span> Protein found in humans

Caspase recruitment domain-containing protein 8 is a protein that in humans is encoded by the CARD8 gene.

<span class="mw-page-title-main">NLRP12</span> Protein-coding gene in the species Homo sapiens

Nucleotide-binding oligomerization domain-like receptor (NLR) pyrin domain (PYD)-containing protein 12 is a protein that in humans is encoded by the NLRP12 gene.

<span class="mw-page-title-main">NLRP4</span> Protein-coding gene in the species Homo sapiens

NACHT, LRR and PYD domains-containing protein 4 is a protein that in humans is encoded by the NLRP4 gene.

<span class="mw-page-title-main">AIM2</span> Protein-coding gene in the species Homo sapiens

Interferon-inducible protein AIM2 also known as absent in melanoma 2 or simply AIM2 is a protein that in humans is encoded by the AIM2 gene.

<span class="mw-page-title-main">NOD-like receptor</span> Class of proteins

The nucleotide-binding oligomerization domain-like receptors, or NOD-like receptors (NLRs), are intracellular sensors of pathogen-associated molecular patterns (PAMPs) that enter the cell via phagocytosis or pores, and damage-associated molecular patterns (DAMPs) that are associated with cell stress. They are types of pattern recognition receptors (PRRs), and play key roles in the regulation of innate immune response. NLRs can cooperate with toll-like receptors (TLRs) and regulate inflammatory and apoptotic response.

Inflammasomes are cytosolic multiprotein complexes of the innate immune system responsible for the activation of inflammatory responses and cell death. They are formed as a result of specific cytosolic pattern recognition receptors (PRRs) sensing microbe-derived pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs) from the host cell, or homeostatic disruptions. Activation and assembly of the inflammasome promotes the activation of caspase-1, which then proteolytically cleaves pro-inflammatory cytokines, interleukin 1β (IL-1β) and interleukin 18 (IL-18), as well as the pore-forming molecule gasdermin D (GSDMD). The N-terminal GSDMD fragment resulting from this cleavage induces a pro-inflammatory form of programmed cell death distinct from apoptosis, referred to as pyroptosis, which is responsible for the release of mature cytokines. Additionally, inflammasomes can act as integral components of larger cell death-inducing complexes called PANoptosomes, which drive another distinct form of pro-inflammatory cell death called PANoptosis.

<span class="mw-page-title-main">Death domain</span>

The death domain (DD) is a protein interaction module composed of a bundle of six alpha-helices. DD is a subclass of protein motif known as the death fold and is related in sequence and structure to the death effector domain (DED) and the caspase recruitment domain (CARD), which work in similar pathways and show similar interaction properties. DD bind each other forming oligomers. Mammals have numerous and diverse DD-containing proteins. Within these proteins, the DD domains can be found in combination with other domains, including: CARDs, DEDs, ankyrin repeats, caspase-like folds, kinase domains, leucine zippers, leucine-rich repeats (LRR), TIR domains, and ZU5 domains.

<span class="mw-page-title-main">Pyrin domain</span>

A pyrin domain is a protein domain and a subclass of protein motif known as the death fold, the 4th and most recently discovered member of the death domain superfamily (DDF). It was originally discovered in the pyrin protein, or marenostrin, encoded by MEFV. The mutation of the MEFV gene is the cause of the disease known as Familial Mediterranean Fever. The domain is encoded in 23 human proteins and at least 31 mouse genes.

<span class="mw-page-title-main">NLRP6</span> Protein-coding gene in the species Homo sapiens

NLRP6, short for NOD-like receptor family pyrin domain containing 6, is an intracellular protein that plays a role in the immune system. It is also known as NALP6, PYPAF5, PAN3, and CLR11.4, and is one of 14 pyrin domain containing members of the NOD-like receptor family of pattern recognition receptors. As with several other NOD-like receptors, NLRP6's role in immunity is related to its ability to regulate caspase-1 and NF-κB activity.

<span class="mw-page-title-main">NLRP11</span> Protein-coding gene in the species Homo sapiens

NOD-like receptor family pyrin domain containing 11 is a protein that in humans is encoded by the NLRP11 gene located on the long arm of human chromosome 19q13.42. NLRP11 belongs to the NALP subfamily, part of a large subfamily of CATERPILLER. It is also known as NALP11, PYPAF6, NOD17, PAN10, and CLR19.6

NLRP (Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing), also abbreviated as NALP, is a type of NOD-like receptor. NOD-like receptors are a type of pattern recognition receptor that are found in the cytosol of the cell, recognizing signals of antigens in the cell. NLRP proteins are part of the innate immune system and detect conserved pathogen characteristics, or pathogen-associated molecular patterns, such as such as peptidoglycan, which is found on some bacterial cells. It is thought that NLRP proteins sense danger signals linked to microbial products, initiating the processes associated with the activation of the inflammasome, including K+ efflux and caspase 1 activation. NLRPs are also known to be associated with a number of diseases. Research suggests NLRP proteins may be involved in combating retroviruses in gametes. As of now, there are at least 14 different known NLRP genes in humans, which are named NLRP1 through NLRP14. The genes translate into proteins with differing lengths of leucine-rich repeat domains.

Not to be confused with Autoimmune disease.

References

  1. 1 2 3 ENSG00000275796, ENSG00000277060, ENSG00000275843, ENSG00000275399, ENSG00000022556, ENSG00000275082, ENSG00000278682, ENSG00000274638, ENSG00000273992 GRCh38: Ensembl release 89: ENSG00000278789, ENSG00000275796, ENSG00000277060, ENSG00000275843, ENSG00000275399, ENSG00000022556, ENSG00000275082, ENSG00000278682, ENSG00000274638, ENSG00000273992 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000035177 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Tschopp J, Martinon F, Burns K (February 2003). "NALPs: a novel protein family involved in inflammation". Nature Reviews. Molecular Cell Biology. 4 (2): 95–104. doi:10.1038/nrm1019. PMID   12563287. S2CID   31417018.
  6. Bertin J, DiStefano PS (December 2000). "The PYRIN domain: a novel motif found in apoptosis and inflammation proteins". Cell Death and Differentiation. 7 (12): 1273–4. doi: 10.1038/sj.cdd.4400774 . PMID   11270363.
  7. 1 2 "Entrez Gene: NLRP2 NLR family, pyrin domain containing 2".
  8. "NLRP2 NLR family pyrin domain containing 2 [ Homo sapiens (human) ]". NCBI.
  9. Minkiewicz J, de Rivero Vaccari JP, Keane RW (July 2013). "Human astrocytes express a novel NLRP2 inflammasome". Glia. 61 (7): 1113–21. doi:10.1002/glia.22499. PMID   23625868. S2CID   24606692.
  10. Acharya S, Saha S, Pradhan P (December 2018). "Novel symmetry-based gene-gene dissimilarity measures utilizing Gene Ontology: Application in gene clustering". Gene. 679: 341–351. doi:10.1016/j.gene.2018.08.062. PMID   30184472. S2CID   52163882.
  11. Peng H, Liu H, Liu F, et al. (September 2017). "NLRP2 and FAF1 deficiency blocks early embryogenesis in the mouse". Reproduction. 154 (3): 245–251. doi:10.1530/REP-16-0629. PMID   28630100.
  12. Vizlin-Hodzic D, Zhai Q, Illes S, et al. (January 2017). "Early onset of inflammation during ontogeny of bipolar disorder: the NLRP2 inflammasome gene distinctly differentiates between patients and healthy controls in the transition between iPS cell and neural stem cell stages". Translational Psychiatry. 7 (1): e1010. doi:10.1038/tp.2016.284. PMC   5545741 . PMID   28117838.
  13. Acharya S, Saha S, Pradhan P (December 2018). "Novel symmetry-based gene-gene dissimilarity measures utilizing Gene Ontology: Application in gene clustering". Gene. 679: 341–351. doi:10.1016/j.gene.2018.08.062. PMID   30184472. S2CID   52163882.
  14. Yang Y, Lang X, Sun S, et al. (November 2018). "NLRP2 negatively regulates antiviral immunity by interacting with TBK1". European Journal of Immunology. 48 (11): 1817–1825. doi: 10.1002/eji.201847589 . PMID   30183071.
  15. Minkiewicz J, de Rivero Vaccari JP, Keane RW (July 2013). "Human astrocytes express a novel NLRP2 inflammasome". Glia. 61 (7): 1113–21. doi:10.1002/glia.22499. PMID   23625868. S2CID   24606692.
  16. Mahadevan S, Sathappan V, Utama B, et al. (April 2017). "Erratum: Maternally expressed NLRP2 links the subcortical maternal complex (SCMC) to fertility, embryogenesis and epigenetic reprogramming". Scientific Reports. 7: 46434. Bibcode:2017NatSR...746434M. doi:10.1038/srep46434. PMC   5395947 . PMID   28422141.
  17. Minkiewicz J, de Rivero Vaccari JP, Keane RW (July 2013). "Human astrocytes express a novel NLRP2 inflammasome". Glia. 61 (7): 1113–21. doi:10.1002/glia.22499. PMID   23625868. S2CID   24606692.
  18. Acharya S, Saha S, Pradhan P (December 2018). "Novel symmetry-based gene-gene dissimilarity measures utilizing Gene Ontology: Application in gene clustering". Gene. 679: 341–351. doi:10.1016/j.gene.2018.08.062. PMID   30184472. S2CID   52163882.

Further reading