NOASS Okeanos Explorer Gulf of Mexico 2017 Expedition was the first of three expeditions on the NOAAS Okeanos Explorer intended to increase the understanding of the deep-sea environment in the Gulf of Mexico. Gulf of Mexico 2017 was a 23-day telepresence-enabled expedition focused on acquiring data on priority exploration areas identified by ocean management and scientific communities. The goal of the expedition was to use remotely operated vehicle (ROV) dives and seafloor mapping operations to increase the understanding of the deep-sea ecosystems in these areas to support management decisions. Many of the areas had no (or low quality) sonar data, these areas were top priority for high-resolution bathymetry collection. The expedition established a baseline of information in the region to catalyze further exploration, research, and management activities. [1] [2] The expedition lasted from 29 November 2017 to 21 December 2017. [1]
Through discussions and information stemming from NOAA and other stakeholders, priority areas of exploration had been identified. The expedition explored deep coral and sponge communities, bottom fish habitats, seamounts, undersea canyons, shipwrecks, and a variety of chemosynthetic habitats including cold seeps, mud volcanoes and brine pools. Using NOAA Ship Okeanos Explorer's unique capabilities, scientists and other audiences onshore were provided with real-time video footage from deep-water areas in important, yet largely unknown, U.S. waters. [1]
17 ROV dives were conducted from 300 to 2,321 meters of depth to explore the diversity and distribution of deep-sea habitats and associated marine communities in the Gulf of Mexico basin. There were also four midwater exploration dives conducted at depths of 300 to 900 meters to investigate the diversity and abundance of the largely unknown pelagic fauna. During these dives hundreds of different species of animals were observed including several potential new species. Several significant range extensions were observed and several organisms were seen alive for the first time. 105 biological samples (32 primary and 73 associated and commensal taxa) were collected several of which came from unknown species. As well as biological samples eight rock samples and one sediment sample were collected for use in geochemical composition analysis and age dating. Several dives gathered geological data to better understand the geological composition and origin of the Florida Escarpment. [1]
At least 20 previously unknown chemosynthetic habitats were discovered including methane seeps (some with visible methane hydrate), asphalt seeps, and brine rivers. Most of these had associated chemosynthetic communities that included large siboglinid tubeworm bushes and extensive mussel beds. There were also many areas of reduced sediments and bacterial mats. Asphaltic and authigenic carbonate outcrops hosting large filter-feeding communities were also observed in geologically active areas. [1]
A number of the ROV dives surveyed Habitat Areas of Particular Concern (HAPCs) proposed by the Gulf of Mexico Fishery Management Council. These surveys collected baseline information for management of the area. Six proposed expansions zones to the Flower Garden Banks National Marine Sanctuary were explored and surveyed to gather information on future expansion of the sanctuary. Many high-diversity and density coral and sponge communities were discovered in these areas including a Madrepora oculata -dominated coral garden. [1]
The wreck of an early 19th-century copper-clad merchant vessel carrying artifacts including glass bottles, ceramic and porcelain vessels, remnants of a suction bilge pump with cast-iron flywheels, an anchor, and a cast-iron stove was surveyed and explored. Based on initial observations, archaeologists believe the shipwreck likely post-dates 1830 and may have been a merchant ship built for distance over speed. [1] [4] [3]
During one of the dives Enypniastes eximia was spotted on the ocean floor. [5]
During dive 17 the ROV Deep Discoverer encountered large gas hydrate mounds and active gas seeps on the sea floor on the northwestern edge of a salt-cored Horn Dome, 87 kilometers from the mouth of the Mississippi River in Louisiana. The low relief seafloor mounds discovered mantled gas hydrate deposits interspersed with carbonates. Gas hydrate forms when low molecular weight gas (usually methane) combines with water and freezes to form "methane ice" under low temperature and moderate pressure conditions. [6] In the deepwater Gulf of Mexico, the ample supply of gas, coupled with appropriate pressure and temperature conditions, cause gas hydrate to form on or just beneath the seafloor. The blue curve on the graph shows the ocean temperatures measured by the conductivity-temperature-depth (CTD) sensor on the Deep Discoverer ROV during Dive 17 at Horn Dome. The sediment temperatures are estimated based on a study that examined nearby well data. Gas hydrate is stable at the seafloor, in the shallow sediments, and from the seafloor to ~600 meters depth in the water column. Such conditions are typical for the deep ocean, but the Gulf of Mexico leaks such large volumes of gas that near-seafloor gas hydrate is more common there than in most locations. [7]
Scientists observed dense orange-stained gas hydrate exposed in several mounds. In some places, the same outcrop had both massive gas hydrate that had probably formed below the seafloor and clear, porous gas hydrate made up of hydrate-encased bubbles. Video recording of methane emissions adjacent to one of the massive hydrate deposits provided insights into seafloor gas dynamics. For example, rapid gas emissions produced bubbles, with some bubbles emerging from clear tubes formed from gas hydrate. Slow gas emissions led to the formation of hydrate-coated gas droplets that initially blocked the gas conduit until the pressure inside the droplet increased, causing the droplet to detach. Similar phenomena were filmed on bare seafloor in the Gulf of Mexico during a 2014 Okeanos Explorer expedition. [7]
The only macrofauna spotted living directly on methane hydrate outcrops were ice worms, Hesiocaeca methanicola . The ice worms had burrowed into the hydrate, creating small depressions. The worms graze on bacteria growing on the hydrate. Ice worms were also seen in some of the burrows in the surrounding gas hydrate, which appears orange due to impurities. In the image to the right active methane emissions occur from beneath the ledge, through conduits at the base of the inverted droplets attached to the sediment and through a bubble tube at the right of the image. Both the bubble tubes and the inverted droplets are encased in clear gas hydrate. [7]
The live video feeds of the expedition were shared publicly worldwide with the live video receiving more than 280,000 views via the NOAA Office of Ocean Exploration and Research (OER) YouTube channel. The expedition also conducted six live telepresence interactions with various groups including the Aquarium of the Pacific, Shedd Aquarium, NOAA Gulf Regional Council, University of New Hampshire's Center for Coastal and Ocean Mapping, The Exploratorium, and members of the MIT Media Lab. [1]
Methane clathrate (CH4·5.75H2O) or (8CH4·46H2O), also called methane hydrate, hydromethane, methane ice, fire ice, natural gas hydrate, or gas hydrate, is a solid clathrate compound (more specifically, a clathrate hydrate) in which a large amount of methane is trapped within a crystal structure of water, forming a solid similar to ice. Originally thought to occur only in the outer regions of the Solar System, where temperatures are low and water ice is common, significant deposits of methane clathrate have been found under sediments on the ocean floors of the Earth. Methane hydrate is formed when hydrogen-bonded water and methane gas come into contact at high pressures and low temperatures in oceans.
A hydrothermal vent is a fissure on the seabed from which geothermally heated water discharges. They are commonly found near volcanically active places, areas where tectonic plates are moving apart at mid-ocean ridges, ocean basins, and hotspots. Hydrothermal deposits are rocks and mineral ore deposits formed by the action of hydrothermal vents.
A cold seep is an area of the ocean floor where hydrogen sulfide, methane and other hydrocarbon-rich fluid seepage occurs, often in the form of a brine pool. Cold does not mean that the temperature of the seepage is lower than that of the surrounding sea water. On the contrary, its temperature is often slightly higher. The "cold" is relative to the very warm conditions of a hydrothermal vent. Cold seeps constitute a biome supporting several endemic species.
A whale fall occurs when the carcass of a whale has fallen onto the ocean floor at a depth greater than 1,000 m (3,300 ft), in the bathyal or abyssal zones. On the sea floor, these carcasses can create complex localized ecosystems that supply sustenance to deep-sea organisms for decades. This is unlike in shallower waters, where a whale carcass will be consumed by scavengers over a relatively short period of time. Whale falls were first observed in the late 1970s with the development of deep-sea robotic exploration. Since then, several natural and experimental whale falls have been monitored through the use of observations from submersibles and remotely operated underwater vehicles (ROVs) in order to understand patterns of ecological succession on the deep seafloor.
Jason is a two-body remotely operated vehicle (ROV) designed, built, and operated by the National Deep Submergence Laboratory of the Woods Hole Oceanographic Institution (WHOI). Construction of Jason began in 1982 and was first launched in 1988, redesigned in 2002 as the second iteration of the ROV. The ROV allows scientists and explorers to have access to the seafloor without leaving the deck of a ship.
A deep-sea community is any community of organisms associated by a shared habitat in the deep sea. Deep sea communities remain largely unexplored, due to the technological and logistical challenges and expense involved in visiting this remote biome. Because of the unique challenges, it was long believed that little life existed in this hostile environment. Since the 19th century however, research has demonstrated that significant biodiversity exists in the deep sea.
NOAAS Okeanos Explorer is a converted United States Navy ship, now an exploratory vessel for the National Oceanic and Atmospheric Administration (NOAA), officially launched in 2010. Starting in 2010, NOAA entered into a five-year partnership with the San Francisco Exploratorium. The focus is on gathering scientific information about oceans for the public as well as for scientific uses. As much as 95% of the ocean remains unexplored, NOAA officials said. The ship is equipped with cameras and will provide real-time viewing of the ocean floor for scientists and for the public.
Hotspot Ecosystem Research and Man's Impact On European Seas (HERMIONE) is an international multidisciplinary project, started in April 2009, that studies deep-sea ecosystems. HERMIONE scientists study the distribution of hotspot ecosystems, how they function and how they interconnect, partially in the context of how these ecosystems are being affected by climate change and impacted by humans through overfishing, resource extraction, seabed installations and pollution. Major aims of the project are to understand how humans are affecting the deep-sea environment and to provide policy makers with accurate scientific information, enabling effective management strategies to protect deep sea ecosystems. The HERMIONE project is funded by the European Commission's Seventh Framework Programme, and is the successor to the HERMES project, which concluded in March 2009.
Global Explorer ROV is a unique deep water remotely operated vehicle that has made numerous dives below 9,000 feet (2,700 m) on science and survey expeditions for National Geographic, the National Oceanographic and Atmospheric Administration (NOAA) and other research organizations. It was designed and built by Chris Nicholson of Deep Sea Systems International, Inc. of Falmouth, Massachusetts.
A methane chimney or gas chimney is a rising column of natural gas, mainly methane within a water or sediment column. The contrast in physical properties between the gas phase and the surrounding water makes such chimneys visible in oceanographic and geophysical data. In some cases, gas bubbles released at the seafloor may dissolve before they reach the ocean surface, but the increased hydrocarbon concentration may still be measured by chemical oceanographic techniques.
An asphalt volcano is a rare type of submarine volcano (seamount) first discovered in 2003. Several examples have been found: first, along the coasts of the United States and Mexico, and then in other regions of the world; a few are still active. Resembling seamounts in structure, they are made entirely of asphalt, and form when natural oil seeps up from the Earth's crust underwater.
The Campeche Knolls are diapirs rising from a salt deposit in the southern Gulf of Mexico, separated from the Mississippi-Texas-Louisiana salt province by the Sigsbee Abyssal Plain. Located southeast of the Sigsbee Knolls, the Campeche Knolls are bounded by Campeche Bank to the East, the Bay of Campeche to the South, and the salt-free abyssal plain called the Veracruz Tongue to the West. Salt deposition is inferred to have occurred in the Late Jurassic, during the rifting stage of the gulf, equivalent to the Louann Salt of the Texas-Louisiana slope. Multibeam echosounder images collected during R/V Sonne cruise SO174 show the northern Campeche Knolls as distinct, elongated hills that average 3 by 6 mi in size, with reliefs of 1,475 to 2,625 ft and slopes of 10 to 20 percent.
Ocean Networks Canada is a world-leading research and ocean observing facility hosted and owned by the University of Victoria, and managed by the not-for profit ONC Society. ONC operates unparalleled observatories in the deep ocean and coastal waters of Canada’s three coasts–the Arctic, the Pacific and the Atlantic–gathering biological, chemical, geological and physical data to drive solutions for science, industry and society. ONC operates the NEPTUNE and VENUS cabled ocean observatories in the northeast Pacific Ocean and the Salish Sea. Additionally, Ocean Networks Canada operates smaller community-based observatories offshore from Cambridge Bay, Nunavut., Campbell River, Kitamaat Village and Digby Island. These observatories collect data on physical, chemical, biological, and geological aspects of the ocean over long time periods. As with other ocean observatories such as ESONET, Ocean Observatories Initiative, MACHO and DONET, scientific instruments connected to Ocean Networks Canada are operated remotely and provide continuous streams of freely available data to researchers and the public. Over 200 gigabytes of data are collected every day.
The National Centers for Environmental Information (NCEI), an agency of the United States government, manages one of the world's largest archives of atmospheric, coastal, geophysical, and oceanic data, containing information that ranges from the surface of the sun to Earth's core, and from ancient tree ring and ice core records to near-real-time satellite images.
Southern Hydrate Ridge, located about 90 km offshore Oregon Coast, is an active methane seeps site located on the southern portion of Hydrate Ridge. It extends 25 km in length and 15 km across, trending north-northeast-south-southwest at the depth of approximately 800 m. Southern Hydrate Ridge has been the site of numerous submersible dives with the human occupied Alvin submarine, extensive visits by numerous robotic vehicles including the Canadian ROV ROPOS, Jason , and Tiburon (MBARI), and time-series geophysical studies that document changes in the subsurface distribution of methane. It is also a key site of the National Science Foundations Regional Cabled Array that is part of the Ocean Observatories Initiative (OOI), which includes eight types of cabled instruments streaming live data back to shore 24/7/365 at the speed of light, as well as uncabled instruments.
This expedition was the final of three expeditions on the NOAAS Okeanos Explorer intended to increase the understanding of the deep-sea environment in the Gulf of Mexico. Gulf of Mexico 2018 was a 23-day telepresence-enabled expedition to collect critical information and acquire data on priority exploration areas identified by the ocean management and scientific communities. The goal of the expedition was to use remotely operated vehicle (ROV) dives in combination with seafloor mapping operations to increase the understanding of deep-sea ecosystems and collect scientific information to support future management decisions. The expedition lasted from 11 April 2018 to 3 May 2018.
Heceta Bank is a rocky bank located 55 kilometers (km) off the Oregon coast near Florence, centered on approximately 44°N, 125°W, and is roughly 29 km long and upwards of 13 km wide. Heceta Bank is an area of ecological and oceanographic importance. The unique bathymetric features and seasonal circulation within the bank provides habitat for a diversity of economically-important fish species.
The Von Damm Hydrothermal Field is a field of hydrothermal vents located just south of Grand Cayman in the Caribbean, on the Mid-Cayman Rise in the Cayman Trough. It is approximately 24 kilometres (15 mi) south of the Beebe Vent Field. The vent field is named in commemoration of geochemical oceanographer Karen Von Damm, who died in 2008.
Bottom simulating reflectors (BSRs) are, on seismic reflection profiles, shallow seismic reflection events, characterized by their reflection geometry similar to seafloor bathymetry. . They have, however, the opposite reflection polarity to the seabed reflection, and frequently intersect the primary reflections.
Daikoku Seamount is a submarine volcano located in the Northern Mariana Islands, in the western Pacific Ocean. It is part of a chain of volcanoes and seamounts that includes the more known Ahyi Seamount and NW Rota-1 seamounts and is situated about 690 km (429 mi) north of the island of Saipan. Daikoku Seamount rises over 2,500 m (8,202 ft) meters from the seafloor, with its summit about 323 m (1,060 ft) below sea level. Since its discovery, the seamount has been studied by several expeditions, including expeditions made by NOAA, using various scientific tools, such as sonar mapping and remotely operated vehicles (ROVs). Daikoku Seamount is known for its active hydrothermal vent system, which hosts diverse communities of deep-sea organisms, including tube worms, crabs, and snails. The seamount is also one of the only volcanoes along with Nikkō Seamount to have had a partially molten sulfur lake, which is usually a feature seen on Io than on Earth.