Neo-Inositol

Last updated
neo-Inositol
Neo-inositol.svg
Names
IUPAC name
neo-Inositol [1]
Systematic IUPAC name
(1R,2R,3s,4S,5S,6s)-Cyclohexane-1,2,3,4,5,6-hexol
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
UNII
  • InChI=1S/C6H12O6/c7-1-2(8)4(10)6(12)5(11)3(1)9/h1-12H/t1-,2-,3-,4-,5-,6- Yes check.svgY
    Key: CDAISMWEOUEBRE-DCLYFUHFSA-N Yes check.svgY
  • O[C@H]1[C@@H](O)[C@H](O)[C@H](O)[C@H](O)[C@H]1O
Properties
C6H12O6
Molar mass 180.156 g·mol−1
Melting point 315 °C; 599 °F; 588 K [2]
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Irritating to eyes, respiratory system and skin. [3]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

neo-Inositol is one of the stereoisomers of inositol. It is one of the nine isomeric forms of cyclohexanehexol; a group of small and chemically very stable polar molecules that have versatile properties. [4] This stereoisomer is naturally occurring, but only in small amounts. It is also known as (1s,2R,3R,4s,5S,6S)-cyclohexane-1,2,3,4,5,6-hexol or 1,2,3/4,5,6-cyclohexanehexol in the IUPAC naming system. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Cahn–Ingold–Prelog priority rules</span> Naming convention for stereoisomers of molecules

In organic chemistry, the Cahn–Ingold–Prelog (CIP) sequence rules are a standard process to completely and unequivocally name a stereoisomer of a molecule. The purpose of the CIP system is to assign an R or S descriptor to each stereocenter and an E or Z descriptor to each double bond so that the configuration of the entire molecule can be specified uniquely by including the descriptors in its systematic name. A molecule may contain any number of stereocenters and any number of double bonds, and each usually gives rise to two possible isomers. A molecule with an integer n describing the number of stereocenters will usually have 2n stereoisomers, and 2n−1 diastereomers each having an associated pair of enantiomers. The CIP sequence rules contribute to the precise naming of every stereoisomer of every organic molecule with all atoms of ligancy of fewer than 4.

<span class="mw-page-title-main">Stereochemistry</span> Subdiscipline of chemistry

Stereochemistry, a subdiscipline of chemistry, involves the study of the relative spatial arrangement of atoms that form the structure of molecules and their manipulation. The study of stereochemistry focuses on the relationships between stereoisomers, which by definition have the same molecular formula and sequence of bonded atoms (constitution), but differ in the geometric positioning of the atoms in space. For this reason, it is also known as 3D chemistry—the prefix "stereo-" means "three-dimensionality".

<span class="mw-page-title-main">Threonine</span> Amino acid

Threonine is an amino acid that is used in the biosynthesis of proteins. It contains an α-amino group, a carboxyl group, and a side chain containing a hydroxyl group, making it a polar, uncharged amino acid. It is essential in humans, meaning the body cannot synthesize it: it must be obtained from the diet. Threonine is synthesized from aspartate in bacteria such as E. coli. It is encoded by all the codons starting AC.

<span class="mw-page-title-main">Enantiomer</span> Stereoisomers which are non-superposable mirror images of each other

In chemistry, an enantiomer – also called optical isomer, antipode, or optical antipode – is one of two stereoisomers that are non-superposable onto their own mirror image. Enantiomers are much like one's right and left hands, when looking at the same face, they cannot be superposed onto each other. No amount of reorientation in three spatial dimensions will allow the four unique groups on the chiral carbon to line up exactly. The number of stereoisomers a molecule has can be determined by the number of chiral carbons it has. Stereoisomers include both enantiomers and diastereomers.

<span class="mw-page-title-main">Inositol</span> Carbocyclic sugar

Inositol, or more precisely myo-inositol, is a carbocyclic sugar that is abundant in the brain and other mammalian tissues; it mediates cell signal transduction in response to a variety of hormones, neurotransmitters, and growth factors and participates in osmoregulation.

In stereochemistry, an epimer is one of a pair of diastereomers. The two epimers have opposite configuration at only one stereogenic center out of at least two. All other stereogenic centers in the molecules are the same in each. Epimerization is the interconversion of one epimer to the other epimer.

<span class="mw-page-title-main">Chirality (chemistry)</span> Geometric property of some molecules and ions

In chemistry, a molecule or ion is called chiral if it cannot be superposed on its mirror image by any combination of rotations, translations, and some conformational changes. This geometric property is called chirality. The terms are derived from Ancient Greek χείρ (cheir) 'hand'; which is the canonical example of an object with this property.

<span class="mw-page-title-main">Enantioselective synthesis</span> Chemical reaction(s) which favor one chiral isomer over another

Enantioselective synthesis, also called asymmetric synthesis, is a form of chemical synthesis. It is defined by IUPAC as "a chemical reaction in which one or more new elements of chirality are formed in a substrate molecule and which produces the stereoisomeric products in unequal amounts."

The International Chemical Identifier is a textual identifier for chemical substances, designed to provide a standard way to encode molecular information and to facilitate the search for such information in databases and on the web. Initially developed by the International Union of Pure and Applied Chemistry (IUPAC) and National Institute of Standards and Technology (NIST) from 2000 to 2005, the format and algorithms are non-proprietary. Since May 2009, it has been developed by the InChI Trust, a nonprofit charity from the United Kingdom which works to implement and promote the use of InChI.

<span class="mw-page-title-main">Inositol oxygenase</span> Protein-coding gene in the species Homo sapiens

Inositol oxygenase, also commonly referred to as myo-inositol oxygenase (MIOX), is a non-heme di-iron enzyme that oxidizes myo-inositol to glucuronic acid. The enzyme employs a unique four-electron transfer at its Fe(II)/Fe(III) coordination sites and the reaction proceeds through the direct binding of myo-inositol followed by attack of the iron center by diatomic oxygen. This enzyme is part of the only known pathway for the catabolism of inositol in humans and is expressed primarily in the kidneys. Recent medical research regarding MIOX has focused on understanding its role in metabolic and kidney diseases such as diabetes, obesity and acute kidney injury. Industrially-focused engineering efforts are centered on improving MIOX activity in order to produce glucaric acid in heterologous hosts.

1<small>D</small>-<i>chiro</i>-Inositol Chemical compound

1D-chiro-Inositol is a member of a family of related substances often referred to collectively as "inositol", although that term encompasses several isomers of questionable biological relevance, including 1L-chiro-inositol. myo-Inositol is converted into DCI by an insulin dependent NAD/NADH epimerase enzyme. It is known to be an important secondary messenger in insulin signal transduction. DCI accelerates the dephosphorylation of glycogen synthase and pyruvate dehydrogenase, rate limiting enzymes of non-oxidative and oxidative glucose disposal. DCI may act to bypass defective normal epimerization of myo-inositol to DCI associated with insulin resistance and at least partially restore insulin sensitivity and glucose disposal. One pilot study found males taking it had increased androgens and reduced estrogen.

<i>scyllo</i>-Inositol Chemical compound

scyllo-Inositol is one of the stereoisomers of inositol. It is also known as scyllitol, cocositol, quercinitol, and 1,3,5/2,4,6-hexahydroxycyclohexane. scyllo-Inositol is a naturally occurring plant sugar alcohol found most abundantly in the coconut palm.

<span class="mw-page-title-main">Inositol-phosphate phosphatase</span> Class of enzymes

The enzyme Inositol phosphate-phosphatase is of the phosphodiesterase family of enzymes. It is involved in the phosphophatidylinositol signaling pathway, which affects a wide array of cell functions, including but not limited to, cell growth, apoptosis, secretion, and information processing. Inhibition of inositol monophosphatase may be key in the action of lithium in treating bipolar disorder, specifically manic depression.

<i>muco</i>-Inositol Chemical compound

muco-Inositol is a critically important chemical in the gustatory (taste) modality of the mammalian nervous system. The generic form is coupled to a phospholipid of the outer lemma of the sensory neurons associated with the sodium ion sensitive channel of gustation.

1<small>L</small>-<i>chiro</i>-Inositol Chemical compound

1L-chiro-Inositol (L-chiro-Inositol) is one of the isomers of inositol.

<i>epi</i>-Inositol Chemical compound

Epi-Inositol is one of the stereoisomers of inositol.

<i>cis</i>-Inositol Chemical compound

cis-Inositol is one of the isomers of inositol.

<i>allo</i>-Inositol Chemical compound

allo-Inositol is a stereoisomer of inositol.

<span class="mw-page-title-main">Cyclitol</span> Class of chemical compounds

In organic chemistry, a cyclitol is a cycloalkane containing at least three hydroxyl, each attached to a different ring carbon atom. The general formula for an unsubstituted cyclitol is C
n
H
2n-x
(OH)
x
or C
n
H
2n
O
x
where 3 ≤ xn.

References

  1. International Union of Pure and Applied Chemistry (2014). Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013. The Royal Society of Chemistry. p. 1415. doi:10.1039/9781849733069. ISBN   978-0-85404-182-4.
  2. Watt, S. W.; Chisholm, J. A.; Jones, W.; Motherwell, S. (2004). "A Molecular Dynamics Simulation of the Melting Points and Glass Transition Temperatures of Myo- and Neo-Inositol". Journal of Chemical Physics. 121 (19): 9565–9573. doi:10.1063/1.1806792. PMID   15538878.
  3. "Material Safety Data Sheet". Sigma-Aldrich. Retrieved 9 October 2012.
  4. Michell, R. H. (February 2008). "Inositol Derivatives: Evolution and Functions" (PDF). Nature Reviews Molecular Cell Biology. 9 (2): 151–61. doi:10.1038/nrm2334. PMID   18216771.
  5. "Neo-Inositol" . Retrieved 9 October 2012.