Neptune Orbiter

Last updated
The Neptune Orbiter (top) would have dropped two probes to investigate the atmosphere of the planet (middle). The orbiter would then deploy a lander on the surface of Triton (bottom). Neptune orbiter.jpg
The Neptune Orbiter (top) would have dropped two probes to investigate the atmosphere of the planet (middle). The orbiter would then deploy a lander on the surface of Triton (bottom).

Neptune Orbiter is an unselected proposal to NASA for an unmanned spacecraft to explore the planet Neptune. It was envisioned that it would be launched sometime around 2016 and take 8 to 12 years to reach the planet; however, NASA's website no longer lists any possible launch date. [1] The Neptune Orbiter concept would have answered many questions about the nature of the planet.

Contents

Its objective was to study Neptune's atmosphere and weather, its ring system, and its moons, particularly Triton. The California Institute of Technology proposed one mission plan in 2004, [2] while the University of Idaho and Boeing proposed an alternative approach in 2005. [3]

Mission summary and status

Neptune Orbiter's primary mission was to go into orbit and perform scientific studies of the planet. The mission concept was first proposed to NASA in 2005. It was proposed to use a launch rocket similar to the Delta IV or Atlas V. The orbiter's trajectory was to use one Venus gravity assist, and a Jupiter gravity assist before arriving at Neptune. The length of time from launch until Neptune arrival was estimated to be 10.25 years.

Just prior to arriving, the orbiter would release its two atmospheric probes, which would transmit data before aerocapture. Then, it would begin Neptune orbit insertion by aerocapture. After adjusting its orbit to its planned science orbit, the orbiter would carry out studies of Neptune, its rings, atmosphere, weather, and its natural satellites. The main phase of the science operations would have taken from 3 to 5 years with a possible extension lasting 3 more years.[ citation needed ]

In 2008, the mission was removed from NASA's possible future missions list. According to NASA's 2010 budget, funding to missions to the outer Solar System was aimed at the future Europa Jupiter System Mission. The remaining budget was allocated to ongoing undertakings such as Cassini–Huygens , Juno , and New Horizons , with the Neptune system not being part of any official considerations. [4]

In 2011, NASA's Decadal Survey considered a mission to an ice giant—either Uranus or Neptune—but for feasibility reasons recommended a Uranus orbiter and probe. [5]

In 2019, a Neptune flyby proposal was made by the JPL under the name "Trident" for inclusion in the Discovery program. [6]

Power sources

Radioisotope thermoelectric generators

The Caltech mission concept would have been similar in design to previous NASA outer Solar System missions. It would use radioisotope thermoelectric generators for electrical power. [7] Based on this proposal, the spacecraft design would be similar to Galileo , Cassini–Huygens , Voyager 2 , and New Horizons , with conventional thrusters for propulsion. Another proposal was to power the spacecraft with a nuclear-powered Stirling engine, which NASA were developing at that time and would be succeeded by the Kilopower study, together with ion propulsion.

Solar panels

Another proposal called for using solar panels to provide electrical power to the spacecraft. The panels would be inflatable, reducing their mass. Although advancements in solar panel technology means it should be possible to achieve sufficient power at the distance of Neptune, the high cost of providing the solar panels would possibly eliminate the idea of using solar cells. This design would presumably also use conventional thrusters, because the dim sunlight in the outer Solar System would probably be insufficient to power an ion propulsion system.

Instruments

Orbiter

The orbiter would have carried out the main mission objectives. Some proposed instruments were a multispectral imaging system to image the planet from ultraviolet to infrared, and a magnetometer,[ citation needed ] to investigate why the Neptune's magnetic field is oriented so far from the planet's axis of rotation.

Triton lander(s)

NASA scientists and engineers have considered to send one or two mini-landers to Triton's surface and analyze the composition of the surface, the interior, and the very rarefied nitrogen atmosphere. Various landing sites were suggested, among those the area with Nitrogen geysers that had been discovered by the Voyager spacecraft, but other locations were also proposed such as either the north or south poles of Triton. No final decision were however made since this were only a proposed mission. The landers' operational lifetime could have been anything between days to a month depending on power source and instrumentation.

Atmospheric probe(s)

Along with Triton landers, at least two atmospheric probes were proposed to descend through Neptune's atmosphere and study the climate and weather of the stormy planet. Similar to the Galileo probe that descended into Jupiter's atmosphere, the descent of a probe into the atmosphere of Neptune would take about 2–3 hours until the planet's atmospheric heat and pressure would destroy it – the data transmitted during the descent would allow a detailed analysis of Neptune's atmosphere.

See also

Related Research Articles

<i>Pioneer 11</i>

Pioneer 11 is a 260-kilogram (570 lb) robotic space probe launched by NASA on April 6, 1973 to study the asteroid belt, the environment around Jupiter and Saturn, solar wind and cosmic rays. It was the first probe to encounter Saturn and the second to fly through the asteroid belt and by Jupiter. Thereafter, Pioneer 11 became the second of five artificial objects to achieve the escape velocity that will allow them to leave the Solar System. Due to power constraints and the vast distance to the probe, the last routine contact with the spacecraft was on September 30, 1995, and the last good engineering data was received on November 24, 1995.

<i>Voyager 2</i> Space probe and the second-farthest man-made object from Earth

Voyager 2 is a space probe launched by NASA on August 20, 1977, to study the outer planets. A part of the Voyager program, it was launched 16 days before its twin, Voyager 1, on a trajectory that took longer to reach Jupiter and Saturn but enabled further encounters with Uranus and Neptune. It is the only spacecraft to have visited either of these two ice giant planets. Voyager 2 is the fourth of five spacecraft to achieve the Solar escape velocity, which will allow it to leave the Solar System.

<i>Pioneer 10</i> Space probe launched in March 1972

Pioneer 10 is an American space probe, launched in 1972 and weighing 258 kilograms, that completed the first mission to the planet Jupiter. Thereafter, Pioneer 10 became the first of five artificial objects to achieve the escape velocity needed to leave the Solar System. This space exploration project was conducted by the NASA Ames Research Center in California, and the space probe was manufactured by TRW Inc.

Saturn Sixth planet from the Sun and second largest planet in the Solar System

Saturn is the sixth planet from the Sun and the second-largest in the Solar System, after Jupiter. It is a gas giant with an average radius of about nine times that of Earth. It only has one-eighth the average density of Earth; however, with its larger volume, Saturn is over 95 times more massive. Saturn is named after the Roman god of wealth and agriculture; its astronomical symbol (♄) represents the god's sickle. The Romans named the seventh day of the week Saturday, Sāturni diēs no later than the 2nd century for the planet Saturn.

<i>Cassini–Huygens</i> Spacecraft sent to the Saturn system

The Cassini–Huygens space-research mission, commonly called Cassini, involved a collaboration between NASA, the European Space Agency (ESA), and the Italian Space Agency (ASI) to send a space probe to study the planet Saturn and its system, including its rings and natural satellites. The Flagship-class robotic spacecraft comprised both NASA's Cassini space probe and ESA's Huygens lander, which landed on Saturn's largest moon, Titan. Cassini was the fourth space probe to visit Saturn and the first to enter its orbit. The two craft took their names from the astronomers Giovanni Cassini and Christiaan Huygens.

<i>Pluto Kuiper Express</i>

Pluto Kuiper Express was an interplanetary space probe that was proposed by Jet Propulsion Laboratory (JPL) scientists and engineers and under development by NASA. The spacecraft was intended to be launched to study Pluto and its moon Charon, along with one or more other Kuiper belt objects (KBOs). The proposal was the third of its kind, after the Pluto 350 and a proposal to send a Mariner Mark II spacecraft to Pluto.

Grand Tour program NASAs cancelled space program intended to explore the outer solar system

The Grand Tour was a NASA program that would have sent two groups of robotic probes to all the planets of the outer Solar System. It called for four spacecraft, two of which would visit Jupiter, Saturn, and Pluto, while the other two would visit Jupiter, Uranus, and Neptune. The enormous cost of the project, around $1 billion, led to its cancellation and replacement with Mariner Jupiter-Saturn, which became the Voyager program.

The exploration of Jupiter has been conducted via close observations by automated spacecraft. It began with the arrival of Pioneer 10 into the Jovian system in 1973, and, as of 2016, has continued with eight further spacecraft missions. All of these missions were undertaken by the National Aeronautics and Space Administration (NASA), and all but two have been flybys that have taken detailed observations without the probe landing or entering orbit. These probes make Jupiter the most visited of the Solar System's outer planets as all missions to the outer Solar System have used Jupiter flybys to reduce fuel requirements and travel time. On 5 July 2016, spacecraft Juno arrived and entered the planet's orbit—the second craft ever to do so. Sending a craft to Jupiter entails many technical difficulties, especially due to the probes' large fuel requirements and the effects of the planet's harsh radiation environment.

Space probe Unmanned space exploration vehicle

A space probe or a spaceprobe is a robotic spacecraft that doesn't orbit around the Earth, but instead, explores further into outer space. A space probe may approach the Moon; travel through interplanetary space; flyby, orbit, or land on other planetary bodies; or enter interstellar space.

Exploration of Uranus Exploration in space

The exploration of Uranus has, to date, been solely through telescopes and a lone probe by NASA's Voyager 2 spacecraft, which made its closest approach to Uranus on January 24, 1986. Voyager 2 discovered 10 moons, studied the planet's cold atmosphere, and examined its ring system, discovering two new rings. It also imaged Uranus' five large moons, revealing that their surfaces are covered with impact craters and canyons.

Exploration of Saturn

The exploration of Saturn has been solely performed by crewless probes. Three missions were flybys, which formed an extended foundation of knowledge about the system. The Cassini–Huygens spacecraft, launched in 1997, was in orbit from 2004 to 2017.

Exploration of Neptune

The exploration of Neptune has only begun with one spacecraft, Voyager 2 in 1989. As of January 2021, there are no approved future missions to visit the Neptunian system. NASA, ESA, and independent academic groups have proposed future scientific missions to visit Neptune. Some mission plans are still active, while others have been abandoned or put on hold.

Discovery and exploration of the Solar System

Discovery and exploration of the Solar System is observation, visitation, and increase in knowledge and understanding of Earth's "cosmic neighborhood". This includes the Sun, Earth and the Moon, the major planets Mercury, Venus, Mars, Jupiter, Saturn, Uranus, and Neptune, their satellites, as well as smaller bodies including comets, asteroids, and dust.

The Solar System — our Sun's system of planets, moons, and smaller debris — is humankind's cosmic backyard. Small by factors of millions compared to interstellar distances, the spaces between the planets are daunting, but technologically surmountable.

Titan Saturn System Mission

Titan Saturn System Mission (TSSM) was a joint NASA–ESA proposal for an exploration of Saturn and its moons Titan and Enceladus, where many complex phenomena were revealed by Cassini. With an estimated NASA cost of $2.5 billion (FY07), TSSM was proposed to launch in 2020, get gravity assists from Earth and Venus, and arrive at the Saturn system in 2029. The 4-year prime mission would include a two-year Saturn tour, a 2-month Titan aero-sampling phase, and a 20-month Titan orbit phase.

Exploration of Pluto

The exploration of Pluto began with the arrival of the New Horizons probe in July 2015, though proposals for such a mission had been studied for many decades. There are no plans as yet for a follow-up mission, though follow-up concepts have been studied.

<i>Argo</i> (NASA spacecraft)

Argo was a 2009 spacecraft mission concept by NASA to the outer planets and beyond. The concept included flybys of Jupiter, Saturn, Neptune, and a Kuiper belt object. A focus on Neptune and its largest moon Triton would have helped answer some of the questions generated by Voyager 2's flyby in 1989, and would have provided clues to ice giant formation and evolution.

<i>Cassini</i> retirement

The Cassini space probe was deliberately disposed of via a controlled fall into Saturn's atmosphere on September 15, 2017, ending its nearly two-decade-long mission. This method was chosen to prevent biological contamination of any of the moons of Saturn now thought to offer potentially habitable environments. Factors that influenced the mission end method included the amount of rocket fuel left, the health of the spacecraft, and funding for operations on Earth.

Trident is a space mission concept to the outer planets proposed in 2019 to NASA's Discovery Program. The concept includes flybys of Jupiter and Neptune with a focus on Neptune's largest moon Triton.

References

  1. "Solar System Exploration: Missions: Solar System Strategic Exploration Plans". NASA. 2009-03-07. Archived from the original on 2009-08-05.
  2. Douglas Fiehler and Steven Oleson. (July 2004). "Neptune Orbiters Utilizing Solar and Radioisotope Electric Propulsion". American Institute of Aeronautics and Astronautics . Retrieved 3 September 2016.
  3. Bernie Bienstock and David Atkinson (10 June 2005). "NEPtune Orbiter with Probes" (PDF). Outer Planets Assessment Group. Retrieved 3 September 2016.
  4. "Planetary Science" (PDF). NASA. Retrieved 3 September 2016.
  5. "Vision and Voyages for Planetary Science in the Decade 2013–2022" (PDF). National Academies Press . Retrieved 3 September 2016.
  6. https://www.nytimes.com/2019/03/19/science/triton-neptune-nasa-trident.html
  7. Mohammed Omair Khan (September 15, 2009). "The Importance of Utilizing and Developing Radioisotope Electric Propulsion for Missions Beyond Saturn" (PDF). JPL/Caltech. Retrieved 3 September 2016.