Nitroethylene

Last updated
Nitroethylene
Nitroethylene structure.svg
Nitroethylene 3D.png
Names
Preferred IUPAC name
Nitroethene
Identifiers
3D model (JSmol)
1209274
ChEBI
ChemSpider
130431
PubChem CID
  • InChI=1S/C2H3NO2/c1-2-3(4)5/h2H,1H2
  • C=C[N+](=O)[O-]
Properties
C2H3NO2
Molar mass 73.051 g·mol−1
Appearanceliquid
Density 1.073 g cm−3
Melting point −55 °C (−67 °F; 218 K)
Boiling point 98.5 °C (209.3 °F; 371.6 K)
78.9 g L−1
Solubility in ethanol, acetone, and benzenevery soluble
log P -1.702
Vapor pressure 45.8 mmHg
Hazards
Flash point 23.2 °C (73.8 °F; 296.3 K)
Safety data sheet (SDS) External MSDS
Thermochemistry
73.7 J mol−1 K−1
Std molar
entropy
(S298)
324 J mol−1 K−1
56 kJ mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Nitroethylene (also known as nitroethene) is a liquid organic compound with the formula C2H3NO2. It is the simplest nitroalkene, which are unsaturated carbon chains with at least one double bond and a NO2 functional group. Nitroethylene serves as a useful intermediate in the production of various other chemicals.

Contents

Properties

Nitroethylene has a dipole moment from the electron withdrawing nitro group present in the molecule, even though it is a neutral species. As a result, it is soluble in water and non-polar solvents. Nitroethylene is extremely reactive, even at low temperatures. It readily decomposes at room temperature. In sharp contrast to reports that highlight its instability, however, it has been found to be stable as a standard solution in benzene for at least 6 months when stored in a refrigerator (-10 °C). [1]

Production

Nitroethene can be produced by reacting nitromethane with formaldehyde or paraformaldehyde (a polymeric form) to form 2-nitroethanol, which can then undergo an E2 acid-catalyzed dehydration reaction. [2] Alternatively, nitroethene may be produced via thermal dehydratation of 2-nitroethanol in the presence of phthalic anhydride. [3]

Preparation of nitroethylene Nitroethylene preparation.png
Preparation of nitroethylene

Reactions

Nitroethylene is a very electron deficient molecule. As a result, nitroethylene usually acts as the electrophile in reactions. Nitroethylene is capable of reacting spontaneously[ clarification needed ] at temperatures as low as -100 °C, often as endothermic reactions. Common reactions for this molecule are cycloadditions, radical additions, and nucleophilic additions. [4]

Cycloaddition

Nitroethylene can act at the 2π electron source in a [4+2] cycloaddition. The nitro group in the molecule serves as an electron withdrawing group that makes the molecule a good candidate as a dienophile. It readily forms an adduct with cyclopentadiene, spiroheptadiene, and their derivatives in a [4+2] cycloaddition. [1]

Nitroethene can react at the 2π electron source in a [3+2] cycloaddition with nitrones. [5] [6]

Nitroethylene is also reactive in domino-cycloaddition processes. For example, they can initially react with a chiral vinyl ether, and then react in a [3+2] cycloaddition with an electron deficient alkene such as dimethyl fumarate. The reactions are almost spontaneous at -78 °C. [7]

Radical polymerization

At very low temperatures (i.e. -78 °C), nitroethylene can polymerize with itself through initiation by one of its lone pairs. This process can be moderated by using t-butyl solvent. Research has been conducted on performing batch polymerization at room temperature in THF solvent. This process requires gamma ray irradiation for initiation. Termination of the polymerization requires a radical retardant, such as hydrogen bromide or hydrogen chloride. Water must be carefully removed prior to the polymerization, as nitroethylene is sensitive to polymerization by traces of water. [2]

Addition and Reduction

In addition to standard nucleophilic addition reactions on the C=C bond, nitroethylene can serve as a Michael acceptor in a Michael addition reaction. A typical Michael donor (i.e. ketone or aldehyde) can be used. [8] Like most nitro compounds, a platinum/palladium catalyzed reaction with hydrogen gas can reduce the nitro group to an amine group.

Another example is the Michael reaction of indole and nitroethylene. [1]

Uses

The main use of nitroethylene is as an intermediate reagent in chemical synthesis. One example is the production of N-(2-nitroethyl)-aniline with aniline at room temperature. The reaction utilizes benzene as a solvent and proceeds to about 90% yield in 12 hours. [9]

Reaction of nitroethylene and aniline Reaction of nitroethylene and aniline.png
Reaction of nitroethylene and aniline

Another example of nitroethylene is from the coupling reaction with a vinyl Grignard reagent and a silyl glyoxalate to form a nitrocylopentanol. This process via a Henry reaction and is highly diastereoselective. [10]

Nitroethylene coupling reaction with a vinyl Grignard and a silyl glyoxalate Nitroethylene coupling.png
Nitroethylene coupling reaction with a vinyl Grignard and a silyl glyoxalate

Related Research Articles

<span class="mw-page-title-main">Organolithium reagent</span> Chemical compounds containing C–Li bonds

In organometallic chemistry, organolithium reagents are chemical compounds that contain carbon–lithium (C–Li) bonds. These reagents are important in organic synthesis, and are frequently used to transfer the organic group or the lithium atom to the substrates in synthetic steps, through nucleophilic addition or simple deprotonation. Organolithium reagents are used in industry as an initiator for anionic polymerization, which leads to the production of various elastomers. They have also been applied in asymmetric synthesis in the pharmaceutical industry. Due to the large difference in electronegativity between the carbon atom and the lithium atom, the C−Li bond is highly ionic. Owing to the polar nature of the C−Li bond, organolithium reagents are good nucleophiles and strong bases. For laboratory organic synthesis, many organolithium reagents are commercially available in solution form. These reagents are highly reactive, and are sometimes pyrophoric.

<span class="mw-page-title-main">Nitro compound</span> Organic compound containing an −NO₂ group

In organic chemistry, nitro compounds are organic compounds that contain one or more nitro functional groups. The nitro group is one of the most common explosophores used globally. The nitro group is also strongly electron-withdrawing. Because of this property, C−H bonds alpha (adjacent) to the nitro group can be acidic. For similar reasons, the presence of nitro groups in aromatic compounds retards electrophilic aromatic substitution but facilitates nucleophilic aromatic substitution. Nitro groups are rarely found in nature. They are almost invariably produced by nitration reactions starting with nitric acid.

The 1,3-dipolar cycloaddition is a chemical reaction between a 1,3-dipole and a dipolarophile to form a five-membered ring. The earliest 1,3-dipolar cycloadditions were described in the late 19th century to the early 20th century, following the discovery of 1,3-dipoles. Mechanistic investigation and synthetic application were established in the 1960s, primarily through the work of Rolf Huisgen. Hence, the reaction is sometimes referred to as the Huisgen cycloaddition. 1,3-dipolar cycloaddition is an important route to the regio- and stereoselective synthesis of five-membered heterocycles and their ring-opened acyclic derivatives. The dipolarophile is typically an alkene or alkyne, but can be other pi systems. When the dipolarophile is an alkyne, aromatic rings are generally produced.

In chemistry, stereoselectivity is the property of a chemical reaction in which a single reactant forms an unequal mixture of stereoisomers during a non-stereospecific creation of a new stereocenter or during a non-stereospecific transformation of a pre-existing one. The selectivity arises from differences in steric and electronic effects in the mechanistic pathways leading to the different products. Stereoselectivity can vary in degree but it can never be total since the activation energy difference between the two pathways is finite: both products are at least possible and merely differ in amount. However, in favorable cases, the minor stereoisomer may not be detectable by the analytic methods used.

<span class="mw-page-title-main">Michael addition reaction</span> Reaction in organic chemistry

In organic chemistry, the Michael reaction or Michael 1,4 addition is a reaction between a Michael donor and a Michael acceptor to produce a Michael adduct by creating a carbon-carbon bond at the acceptor's β-carbon. It belongs to the larger class of conjugate additions and is widely used for the mild formation of carbon-carbon bonds.

<span class="mw-page-title-main">Enolate</span> Organic anion formed by deprotonating a carbonyl (>C=O) compound

In organic chemistry, enolates are organic anions derived from the deprotonation of carbonyl compounds. Rarely isolated, they are widely used as reagents in the synthesis of organic compounds.

The azide-alkyne Huisgen cycloaddition is a 1,3-dipolar cycloaddition between an azide and a terminal or internal alkyne to give a 1,2,3-triazole. Rolf Huisgen was the first to understand the scope of this organic reaction. American chemist Karl Barry Sharpless has referred to copper-catalyzed version of this cycloaddition as "the cream of the crop" of click chemistry and "the premier example of a click reaction".

<span class="mw-page-title-main">Bamford–Stevens reaction</span> Synthesis of alkenes by base-catalysed decomposition of tosylhydrazones

The Bamford–Stevens reaction is a chemical reaction whereby treatment of tosylhydrazones with strong base gives alkenes. It is named for the British chemist William Randall Bamford and the Scottish chemist Thomas Stevens Stevens (1900–2000). The usage of aprotic solvents gives predominantly Z-alkenes, while protic solvent gives a mixture of E- and Z-alkenes. As an alkene-generating transformation, the Bamford–Stevens reaction has broad utility in synthetic methodology and complex molecule synthesis.

<span class="mw-page-title-main">Henry reaction</span> Chemical reaction

The Henry reaction is a classic carbon–carbon bond formation reaction in organic chemistry. Discovered in 1895 by the Belgian chemist Louis Henry (1834–1913), it is the combination of a nitroalkane and an aldehyde or ketone in the presence of a base to form β-nitro alcohols. This type of reaction is also referred to as a nitroaldol reaction. It is nearly analogous to the aldol reaction that had been discovered 23 years prior that couples two carbonyl compounds to form β-hydroxy carbonyl compounds known as "aldols". The Henry reaction is a useful technique in the area of organic chemistry due to the synthetic utility of its corresponding products, as they can be easily converted to other useful synthetic intermediates. These conversions include subsequent dehydration to yield nitroalkenes, oxidation of the secondary alcohol to yield α-nitro ketones, or reduction of the nitro group to yield β-amino alcohols.

<span class="mw-page-title-main">Chiral auxiliary</span> Stereogenic group placed on a molecule to encourage stereoselectivity in reactions

In stereochemistry, a chiral auxiliary is a stereogenic group or unit that is temporarily incorporated into an organic compound in order to control the stereochemical outcome of the synthesis. The chirality present in the auxiliary can bias the stereoselectivity of one or more subsequent reactions. The auxiliary can then be typically recovered for future use.

<span class="mw-page-title-main">Grignard reagent</span> Organometallic compounds used in organic synthesis

Grignard reagents or Grignard compounds are chemical compounds with the general formula R−Mg−X, where X is a halogen and R is an organic group, normally an alkyl or aryl. Two typical examples are methylmagnesium chloride Cl−Mg−CH3 and phenylmagnesium bromide (C6H5)−Mg−Br. They are a subclass of the organomagnesium compounds.

<span class="mw-page-title-main">Organozinc chemistry</span>

Organozinc chemistry is the study of the physical properties, synthesis, and reactions of organozinc compounds, which are organometallic compounds that contain carbon (C) to zinc (Zn) chemical bonds.

The Kulinkovich reaction describes the organic synthesis of substituted cyclopropanols through reaction of esters with dialkyl­dialkoxy­titanium reagents, which are generated in situ from Grignard reagents containing a hydrogen in beta-position and titanium(IV) alkoxides such as titanium isopropoxide. This reaction was first reported by Oleg Kulinkovich and coworkers in 1989.

Bioconjugation is a chemical strategy to form a stable covalent link between two molecules, at least one of which is a biomolecule.

Methanesulfonyl chloride is an organosulfur compound with the formula CH3SO2Cl. Using the organic pseudoelement symbol Ms for the methanesulfonyl group CH3SO2–, it is frequently abbreviated MsCl in reaction schemes or equations. It is a colourless liquid that dissolves in polar organic solvents but is reactive toward water, alcohols, and many amines. The simplest organic sulfonyl chloride, it is used to make methanesulfonates and to generate the elusive molecule sulfene.

Vicinal difunctionalization refers to a chemical reaction involving transformations at two adjacent centers. This transformation can be accomplished in α,β-unsaturated carbonyl compounds via the conjugate addition of a nucleophile to the β-position followed by trapping of the resulting enolate with an electrophile at the α-position. When the nucleophile is an enolate and the electrophile a proton, the reaction is called Michael addition.

<span class="mw-page-title-main">Electrophilic fluorination</span>

Electrophilic fluorination is the combination of a carbon-centered nucleophile with an electrophilic source of fluorine to afford organofluorine compounds. Although elemental fluorine and reagents incorporating an oxygen-fluorine bond can be used for this purpose, they have largely been replaced by reagents containing a nitrogen-fluorine bond.

Trimethylenemethane cycloaddition is the formal (3+2) annulation of trimethylenemethane (TMM) derivatives to two-atom pi systems. Although TMM itself is too reactive and unstable to be stored, reagents which can generate TMM or TMM synthons in situ can be used to effect cycloaddition reactions with appropriate electron acceptors. Generally, electron-deficient pi bonds undergo cyclization with TMMs more easily than electron-rich pi bonds.

Reductions with metal alkoxyaluminium hydrides are chemical reactions that involve either the net hydrogenation of an unsaturated compound or the replacement of a reducible functional group with hydrogen by metal alkoxyaluminium hydride reagents.

<span class="mw-page-title-main">Vinyl iodide functional group</span>

In organic chemistry, a vinyl iodide functional group is an alkene with one or more iodide substituents. Vinyl iodides are versatile molecules that serve as important building blocks and precursors in organic synthesis. They are commonly used in carbon-carbon forming reactions in transition-metal catalyzed cross-coupling reactions, such as Stille reaction, Heck reaction, Sonogashira coupling, and Suzuki coupling. Synthesis of well-defined geometry or complexity vinyl iodide is important in stereoselective synthesis of natural products and drugs.

References

  1. 1 2 3 Ranganathan, D.; Rao, C. B.; Ranganathan, S.; Mehrotra, A.K; Iyengar, R. Nitroethylene: A Stable, Clean, and Reactive Agent for Organic Synthesis. J. Org. Chem.1980, 45, 1185-1189.
  2. 1 2 Yamaoka, H.; Williams, F.; Hayashi, K. Radiation-Induced Polymerization of Nitroethylene. Trans. Faraday Soc., 1967, 63, 376-381. DOI: 10.1039/TF9676300376
  3. Zimmerman, Howard E.; Wang, Pengfei (2002-12-01). "Inter- and Intramolecular Stereoselective Protonation of Enols1,2". The Journal of Organic Chemistry. 67 (26): 9216–9226. doi:10.1021/jo026187p. ISSN   0022-3263. PMID   12492323.
  4. Singleton, Daniel A. Nitroethylene. Publication. College Station: n.p., 2008. Wiley Online Library. Web. 18 Oct. 2012.
  5. Jasiński, R. (2009-06-01). "The question of the regiodirection of the [2+3] cycloaddition reaction of triphenylnitrone to nitroethene". Chemistry of Heterocyclic Compounds. 45 (6): 748–749. doi:10.1007/s10593-009-0318-3. ISSN   0009-3122.
  6. Jasiński, Radomir (2009-09-11). "Regio- and stereoselectivity of [2+3]cycloaddition of nitroethene to (Z)-N-aryl-C-phenylnitrones". Collection of Czechoslovak Chemical Communications. 74 (9): 1341–1349. doi:10.1135/cccc2009037. ISSN   1212-6950.
  7. Denmark, S. E., Hurd A. R. Tandem [4+2]/[3+2] Cycloadditions with Nitroethylene. J. Org. Chem., 1998, 63(9), 3045-3050.
  8. Y. Chi, L. Guo, N. A. Kopf, S. H. Gellman. Enantioselective Organocatalytic Michael Addition of Aldehydes to Nitroethylene: Efficient Access to γ2-Amino Acids. J. Am. Chem. Soc., 2008, 130, 5048-5049.
  9. Nitroethylene properties. http://es.sw3c.com/chemical/formulas/cas-3638-64-0.html (accessed 11/6/2012).
  10. Boyce G. R., & Johnson, J. S. Three-Component Coupling Reactions of Silyl Glyoxylates, Vinyl Grignard Reagent, and Nitroalkenes: An Efficient, Highly Diastereoselective Approach to Nitrocyclopentanols. Angewandte Chemie International Edition, 2010, 49(47), pp. 8930–8933