Nubian Sandstone

Last updated

The Nubian Sandstone is a variety of sedimentary rock deposited on the Precambrian basement in the eastern Sahara, north-east Africa and Arabian Peninsula. It consists of continental sandstone with thin beds of marine limestones, and marls. The Nubian Sandstone was deposited between the Lower Paleozoic and Upper Cretaceous, with marine beds dating from the Carboniferous to Lower Cretaceous. [1]

Contents

Formation

The Nubian Sandstone ranges in age from the Cambrian to Upper Cretaceous eras. Positioning of the paleoequator and paleolatitude at 20° S was derived from paleomagnetic data showing the Nubian was originally deposited in the paleoequatorial to subequatorial zone. These paleomagnetic results corroborated previous studies suggesting that north Africa did not shift in latitude from 210 to 110 million years ago and extended this period to 85 million years. Nubian Sandstone was deposited under a tropical to subtropical climate and formed under a variety of continental conditions, including eolian merging intermittently into shallow marine. [2]

Characteristics

Nubian Sandstone formation of Amram Columns, Eilat Massif, Israel AmramColumns.jpg
Nubian Sandstone formation of Amram Columns, Eilat Massif, Israel

The Nubian Sandstone complex has a thickness varying from under 500 m to over 3000 m, resting on the Precambrian basement. This is complicated by various structural faults and fold axes traversing the region in a north-eastern direction. Maximum development occurs in the Ain Dalla basin, a downthrown structural block south-west of the Bahariya oasis. Basement features present a dominant control on the complex's structural and sedimentological form. Despite many structural complications, the Nubian Sandstone likely constitutes a single hydrogeological system west of the Suez Gulf. To the east, on the Sinai Peninsula, a second system might exist with some connection to the primary western system in the north. The main western system, extending into Libya and Sudan, consists of a multi-layered artesian basin where massive groundwater reserves accumulated, principally during pluvials of the Quaternary. Locally, carbonate rocks overlying complex karst features and are recharged from the underlying major aquifer. [3] Fluvial and structural interpretations from 2007 show the desert in western Egypt was induced by fluvial action, including recently mapped alluvial fans. In central areas, braided channels are spatially aligned to a north-east structural trend, suggesting preferential water flow paths. Alluvial fans and structurally enclosed channels with gentle slopes and optimal recharge conditions between 1 and 5%, indicating high groundwater potential. Synthetic Aperture Radar (SAR) interpretations correlated with anomalies from groundwater in 383 wells, suggest a connection between the spatial organization of fluvial and structural features with low-salinity groundwater, which exists adjacent to alluvial fans and the south-west reaches of structurally enclosed channels. Wells in the vicinity of structures contained low-salinity water. [4]

Derived soils

Nubian Sandstone exposures in sub-humid, semi-arid, and arid conditions produce soil that is red and sandy but very different in other aspects. Only in sub-humid zones do these soils contain a moderately developed profile, including a textural B horizon lacking soluble salts and carbonates. In semi-arid and arid zones, profile differentiation is either weak or does not exist. In arid zones soils are shallow and contain carbonates, and soluble salts, including gypsum. The sole clay mineral common to all Nubian sandstone parent materials is kaolinite, which is the major clay mineral in sub-humid zone soil. In semi-arid soils smectite is a second major clay component. In arid zones small amounts of smectite and palygorskite accompany kaolinite. It is likely that smectite and palygorskite are products of pedogenic neoformation. Aeolian material was probably introduced into the silt and fine sand fractions from semi-arid and arid soils. It is also possible that some contamination of clay fractions occurred. [5]

Nubian Sandstone in Arabia

When in contact with Upper Cretaceous limestone, Nubian Sandstone underlies the latter conformably. In Lebanon, Anti-Lebanon and Hermon it is underlain by Jurassic limestone. Its upper strata is likely from the Lower or Middle Cretaceous age. However, Jurassic limestone is absent in southern areas. In Western Sinai, Nubian Sandstone rests on Carboniferous limestone, and by the Dead Sea on Cambrian limestone: at Petra and other locations it rests unconformably on crystalline rocks. While age calculation for the Nubian Sandstone is relatively simple in Lebanon, Anti-Lebanon and Hermon, it is much more complicated in Western Sinai and the Dead Sea area. Since sandstone is assumed to form more rapidly than other rocks it is difficult to conceive that the 2,000 feet of sandstone in the southeastern Dead Sea was in the formative process from the Cambrian to the Cretaceous.

Appearance

Liesegang rings made of iron oxide in sandstone from a chamber in Petra, Jordan Wall Patterns.jpg
Liesegang rings made of iron oxide in sandstone from a chamber in Petra, Jordan

Nubian Sandstone is most commonly brown or reddish, but in places it shows a much wider variety of color. The ancient temples and tombs in Petra were carved from this rock. In certain places it is extremely friable, and in others compact and hard. Sand in the Arabian deserts was primarily derived from it, carried by prevailing western winds. Where it is covered by a sheet of eruptive rock (charrah), it is protected from erosion. Nubian Sandstone frequently includes strata of clay and shale and thin seams of coal or lignite. This indicates that it was deposited in seas that were relatively shallow at the time.

Etymology

The term Nubian Sandstone was first introduced to the Egyptian stratigraphy by Joseph Rüssegger in 1837, who used the term "Sandstein von Nubien" to designate nonfossiliferous sandstone sections of Paleozoic or Mesozoic age. Rüssegger followed and studied this series of sandstone formations from the Sudan, Egypt, Libya, and Arabia Petrsea (northeastern Arabia). [6]

See also

Notes

  1. Issawi 1973, p.1433
  2. El-Shazly 1982
  3. A. Shata
  4. El-Baz & El-Shazly, 2007
  5. A. Singer 1974, p. 310
  6. R. Tate pp. 404-406

Related Research Articles

Fossil water or paleowater is an ancient body of water that has been contained in some undisturbed space, typically groundwater in an aquifer, for millennia. Other types of fossil water can include subglacial lakes, such as Antarctica's Lake Vostok, and even ancient water on other planets.

<span class="mw-page-title-main">Arabian-Nubian Shield</span>

The Arabian-Nubian Shield (ANS) is an exposure of Precambrian crystalline rocks on the flanks of the Red Sea. The crystalline rocks are mostly Neoproterozoic in age. Geographically – and from north to south – the ANS includes parts of Israel, Jordan, Egypt, Saudi Arabia, Sudan, Eritrea, Ethiopia, Yemen, and Somalia. The ANS in the north is exposed as part of the Sahara Desert and Arabian Desert, and in the south in the Ethiopian Highlands, Asir province of Arabia and Yemen Highlands.

<span class="mw-page-title-main">Nubian Sandstone Aquifer System</span> Fossil water aquifer system in northeastern Africa

The Nubian Sandstone Aquifer System (NSAS) is the world's largest known fossil water aquifer system. It is located underground in the Eastern end of the Sahara desert and spans the political boundaries of four countries in north-eastern Africa. NSAS covers a land area spanning just over two million km2, including north-western Sudan, north-eastern Chad, south-eastern Libya, and most of Egypt. Containing an estimated 150,000 km3 of groundwater, the significance of the NSAS as a potential water resource for future development programs in these countries is extraordinary. The Great Man-Made River (GMMR) project in Libya makes use of the system, extracting substantial amounts of water from this aquifer, removing an estimated 2.4 km3 of fresh water for consumption and agriculture per year.

The Perth Basin is a thick, elongated sedimentary basin in Western Australia. It lies beneath the Swan Coastal Plain west of the Darling Scarp, representing the western limit of the much older Yilgarn Craton, and extends further west offshore. Cities and towns including Perth, Busselton, Bunbury, Mandurah and Geraldton are built over the Perth Basin.

<span class="mw-page-title-main">San Juan Basin</span>

The San Juan Basin is a geologic structural basin located near the Four Corners region of the Southwestern United States. The basin covers 7,500 square miles and resides in northwestern New Mexico, southwestern Colorado, and parts of Utah and Arizona. Specifically, the basin occupies space in the San Juan, Rio Arriba, Sandoval, and McKinley counties in New Mexico, and La Plata and Archuleta counties in Colorado. The basin extends roughly 100 miles (160 km) N-S and 90 miles (140 km) E-W.

<span class="mw-page-title-main">Gulf of Suez Rift</span> Continental rift zone that was active between the Late Oligocene and the end of the Miocene

The Gulf of Suez Rift is a continental rift zone that was active between the Late Oligocene and the end of the Miocene. It represented a continuation of the Red Sea Rift until break-up occurred in the middle Miocene, with most of the displacement on the newly developed Red Sea spreading centre being accommodated by the Dead Sea Transform. During its brief post-rift history, the deepest part of the remnant rift topography has been filled by the sea, creating the Gulf of Suez.

The Moghra Oasis is an uninhabited oasis in the northeastern part of the Qattara Depression in the Western Desert of Egypt. It has a 4 km2 (1.5 sq mi) lake containing brackish water, salt marshes and a swamp with reeds.

<span class="mw-page-title-main">Geology of Lebanon</span>

The geology of Lebanon remains poorly studied prior to the Jurassic. The country is heavily dominated by limestone, sandstone, other sedimentary rocks, and basalt, defined by its tectonic history. In Lebanon, 70% of exposed rocks are limestone karst.

The geology of Western Sahara includes rock units dating back to the Archean more than two billion years old, although deposits of phosphorus formed in the Mesozoic and Cenozoic have helped to prompt the current Moroccan occupation of most of the country.

The geology of Somalia is built on more than 700 million year old igneous and metamorphic crystalline basement rock, which outcrops at some places in northern Somalia. These ancient units are covered in thick layers of sedimentary rock formed in the last 200 million years and influenced by the rifting apart of the Somali Plate and the Arabian Plate. The geology of Somaliland, the de facto independent country recognized as part of Somalia, is to some degree better studied than that of Somalia as a whole. Instability related to the Somali Civil War and previous political upheaval has limited geologic research in places while heightening the importance of groundwater resources for vulnerable populations.

<span class="mw-page-title-main">Geology of Tanzania</span>

The geology of Tanzania began to form in the Precambrian, in the Archean and Proterozoic eons, in some cases more than 2.5 billion years ago. Igneous and metamorphic crystalline basement rock forms the Archean Tanzania Craton, which is surrounded by the Proterozoic Ubendian belt, Mozambique Belt and Karagwe-Ankole Belt. The region experienced downwarping of the crust during the Paleozoic and Mesozoic, as the massive Karoo Supergroup deposited. Within the past 100 million years, Tanzania has experienced marine sedimentary rock deposition along the coast and rift formation inland, which has produced large rift lakes. Tanzania has extensive, but poorly explored and exploited natural resources, including coal, gold, diamonds, graphite and clays.

The geology of Morocco formed beginning up to two billion years ago, in the Paleoproterozoic and potentially even earlier. It was affected by the Pan-African orogeny, although the later Hercynian orogeny produced fewer changes and left the Maseta Domain, a large area of remnant Paleozoic massifs. During the Paleozoic, extensive sedimentary deposits preserved marine fossils. Throughout the Mesozoic, the rifting apart of Pangaea to form the Atlantic Ocean created basins and fault blocks, which were blanketed in terrestrial and marine sediments—particularly as a major marine transgression flooded much of the region. In the Cenozoic, a microcontinent covered in sedimentary rocks from the Triassic and Cretaceous collided with northern Morocco, forming the Rif region. Morocco has extensive phosphate and salt reserves, as well as resources such as lead, zinc, copper and silver.

<span class="mw-page-title-main">Geology of Sudan</span>

The geology of Sudan formed primarily in the Precambrian, as igneous and metamorphic crystalline basement rock. Ancient terranes and inliers were intruded with granites, granitoids as well as volcanic rocks. Units of all types were deformed, reactivated, intruded and metamorphosed during the Proterozoic Pan-African orogeny. Dramatic sheet flow erosion prevented almost any sedimentary rocks from forming during the Paleozoic and Mesozoic. From the Mesozoic into the Cenozoic the formation of the Red Sea depression and complex faulting led to massive sediment deposition in some locations and regional volcanism. Sudan has petroleum, chromite, salt, gold, limestone and other natural resources.

The geology of South Dakota began to form more than 2.5 billion years ago in the Archean eon of the Precambrian. Igneous crystalline basement rock continued to emplace through the Proterozoic, interspersed with sediments and volcanic materials. Large limestone and shale deposits formed during the Paleozoic, during prevalent shallow marine conditions, followed by red beds during terrestrial conditions in the Triassic. The Western Interior Seaway flooded the region, creating vast shale, chalk and coal beds in the Cretaceous as the Laramide orogeny began to form the Rocky Mountains. The Black Hills were uplifted in the early Cenozoic, followed by long-running periods of erosion, sediment deposition and volcanic ash fall, forming the Badlands and storing marine and mammal fossils. Much of the state's landscape was reworked during several phases of glaciation in the Pleistocene. South Dakota has extensive mineral resources in the Black Hills and some oil and gas extraction in the Williston Basin. The Homestake Mine, active until 2002, was a major gold mine that reached up to 8000 feet underground and is now used for dark matter and neutrino research.

The geology of Arizona began to form in the Precambrian. Igneous and metamorphic crystalline basement rock may have been much older, but was overwritten during the Yavapai and Mazatzal orogenies in the Proterozoic. The Grenville orogeny to the east caused Arizona to fill with sediments, shedding into a shallow sea. Limestone formed in the sea was metamorphosed by mafic intrusions. The Great Unconformity is a famous gap in the stratigraphic record, as Arizona experienced 900 million years of terrestrial conditions, except in isolated basins. The region oscillated between terrestrial and shallow ocean conditions during the Paleozoic as multi-cellular life became common and three major orogenies to the east shed sediments before North America became part of the supercontinent Pangaea. The breakup of Pangaea was accompanied by the subduction of the Farallon Plate, which drove volcanism during the Nevadan orogeny and the Sevier orogeny in the Mesozoic, which covered much of Arizona in volcanic debris and sediments. The Mid-Tertiary ignimbrite flare-up created smaller mountain ranges with extensive ash and lava in the Cenozoic, followed by the sinking of the Farallon slab in the mantle throughout the past 14 million years, which has created the Basin and Range Province. Arizona has extensive mineralization in veins, due to hydrothermal fluids and is notable for copper-gold porphyry, lead, zinc, rare minerals formed from copper enrichment and evaporites among other resources.

The geology of North Dakota includes thick sequences oil and coal bearing sedimentary rocks formed in shallow seas in the Paleozoic and Mesozoic, as well as terrestrial deposits from the Cenozoic on top of ancient Precambrian crystalline basement rocks. The state has extensive oil and gas, sand and gravel, coal, groundwater and other natural resources.

<span class="mw-page-title-main">Geology of Uzbekistan</span>

The geology of Uzbekistan consists of two microcontinents and the remnants of oceanic crust, which fused together into a tectonically complex but resource rich land mass during the Paleozoic, before becoming draped in thick, primarily marine sedimentary units.

The geology of Turkmenistan includes two different geological provinces: the Karakum, or South Turan Platform, and the Alpine Orogen.

The geology of Israel includes igneous and metamorphic crystalline basement rocks from the Precambrian overlain by a lengthy sequence of sedimentary rocks extending up to the Pleistocene and overlain with alluvium, sand dunes and playa deposits.

The geology of Saudi Arabia includes Precambrian igneous and metamorphic basement rocks, exposed across much of the country. Thick sedimentary sequences from the Phanerozoic dominate much of the country's surface and host oil.

References