OGLE-2018-BLG-0799Lb

Last updated
OGLE-2018-BLG-0799Lb
Discovery [1]
Discovery site OGLE
Discovery dateOctober 2020
(published August 2022)
Gravitional Microlensing
Orbital characteristics
1.38+0.61
−0.31
Physical characteristics
Mass 0.22 MJ

    OGLE-2018-BLG-0799Lb is a sub-Saturn-mass exoplanet discovered by the Optical Gravitational Lensing Experiment (OGLE) collaboration, through a gravitational microlensing event that occurred in May 2018. The discovery was announced in October 2020, and published in August 2022. [1]

    It has a mass of 0.22 Jupiter masses and is 14,400 light years away from earth. It orbits a dwarf star of approximately 0.08 solar masses. [1] [2]

    Related Research Articles

    <span class="mw-page-title-main">Gravitational microlensing</span> Astronomical phenomenon due to the gravitational lens effect

    Gravitational microlensing is an astronomical phenomenon due to the gravitational lens effect. It can be used to detect objects that range from the mass of a planet to the mass of a star, regardless of the light they emit. Typically, astronomers can only detect bright objects that emit much light (stars) or large objects that block background light. These objects make up only a minor portion of the mass of a galaxy. Microlensing allows the study of objects that emit little or no light.

    <span class="mw-page-title-main">OGLE-2005-BLG-390Lb</span> Super-Earth orbiting OGLE-2005-BLG-390L

    OGLE-2005-BLG-390Lb is a super-Earth exoplanet orbiting OGLE-2005-BLG-390L, a star 21,500 ± 3,300 light-years from Earth near the center of the Milky Way, making it one of the most distant planets known. On January 25, 2006, Probing Lensing Anomalies NETwork/Robotic Telescope Network (PLANET/Robonet), Optical Gravitational Lensing Experiment (OGLE), and Microlensing Observations in Astrophysics (MOA) made a joint announcement of the discovery. The planet does not appear to meet conditions presumed necessary to support life.

    OGLE-2003-BLG-235L (MOA-2003-BLG-53L) is a star in the constellation of Sagittarius. The first gravitational microlensing event for which a planet orbiting the lens was detected around this star. The event occurred in during July 2003. Two groups observed and independently detected the event: the Optical Gravitational Lensing Experiment (OGLE) and the Microlensing Observations in Astrophysics (MOA), hence, the double designation. It is an orange dwarf star of spectral type K, which is accompanied by a giant planet.

    OGLE-2005-BLG-169Lb is an extrasolar planet located approximately 2,700 parsecs away in the constellation of Sagittarius, orbiting the star OGLE-2005-BLG-169L. This planet was discovered by the OGLE project using the gravitational microlensing method. Based on a most likely mass for the host star of 0.49 solar mass (M), the planet has a mass of 13 times that of Earth (MEarth). Its mass and estimated temperature are close to those of Uranus. It is speculated that this planet may either be an ice giant like Uranus, or a "naked super-Earth" with a solid icy or rocky surface.

    OGLE-2005-BLG-071L is a distant, magnitude 19.5 galactic bulge star located in the constellation Scorpius, approximately 11,000 light years away from the Solar System. The star is probably a red dwarf with a mass 43% of that of the Sun.

    <span class="mw-page-title-main">OGLE-2006-BLG-109L</span>

    OGLE-2006-BLG-109L is a dim magnitude 17 M0V galactic bulge star approximately 4,920 light-years away in the constellation of Scorpius.

    RoboNet-1.0 was a prototype global network of UK-built 2-metre robotic telescopes, the largest of their kind in the world, comprising the Liverpool Telescope on La Palma, the Faulkes Telescope North on Maui (Hawaii), and the Faulkes Telescope South in Australia, managed by a consortium of ten UK universities under the lead of Liverpool John Moores University. For the technological aims of integrating a global network to act effectively as a single instrument, and maximizing the scientific return by applying the newest developments in e-Science, RoboNet adopted the intelligent-agent architecture devised and maintained by the eSTAR project.

    <span class="mw-page-title-main">OGLE-2006-BLG-109Lc</span> Saturn-sized planet orbiting OGLE-2006-BLG-109L

    OGLE-2006-BLG-109Lc is an extrasolar planet approximately 4,925 light-years away in the constellation of Sagittarius. The planet was detected orbiting the star OGLE-2006-BLG-109L in 2008 by a research team using Microlensing. The host star is about 50% the mass of the Sun and the planet is about 90% the mass of Saturn.

    MOA-2008-BLG-310Lb is an extrasolar planet which orbits probably the late K-type star MOA-2008-BLG-310L, located at least 20000 light years away in the constellation Scorpius. This planet has mass 23% of Jupiter or 77% of Saturn and orbits at 1.25 AU from the star. This planet was discovered by using the gravitational microlensing method on August 4, 2009. As it is typical for exoplanets detected by microlensing method, the orbital period and eccentricity are not determined.

    The Microlensing Follow-Up Network is an informal group of observers who monitor high magnification gravitational microlensing events in the Milky Way's Galactic Bulge. Its goal is to detect extrasolar planets via microlensing of the parent star by the planet. μFUN is a follow-up network - they monitor microlensing events identified by survey groups such as OGLE and Microlensing Observations in Astrophysics (MOA).

    <span class="mw-page-title-main">Discoveries of exoplanets</span> Detecting planets located outside the Solar System

    An exoplanet is a planet located outside the Solar System. The first evidence of an exoplanet was noted as early as 1917, but was not recognized as such until 2016; no planet discovery has yet come from that evidence. What turned out to be the first detection of an exoplanet was published among a list of possible candidates in 1988, though not confirmed until 2003. The first confirmed detection came in 1992, with the discovery of terrestrial-mass planets orbiting the pulsar PSR B1257+12. The first confirmation of an exoplanet orbiting a main-sequence star was made in 1995, when a giant planet was found in a four-day orbit around the nearby star 51 Pegasi. Some exoplanets have been imaged directly by telescopes, but the vast majority have been detected through indirect methods, such as the transit method and the radial-velocity method. As of 1 January 2024, there are 5,576 confirmed exoplanets in 4,113 planetary systems, with 887 systems having more than one planet. This is a list of the most notable discoveries.

    OGLE-2014-BLG-0124Lb is one of the farthest known planets in the universe. It is approximately 13,000 light years away, located near the center of the galaxy. The planet was discovered using a technique called microlensing. In this case it took 150 days. Two telescopes are used to detect the planet and the time difference between identification by each telescope is used to calculate the distance to the planet. This also contributes to determining the mass of the planet which is about half of Jupiter's. The planet orbits a star with a mass of 0.7 solar masses and is 3.1 AUs from it.

    <span class="mw-page-title-main">OGLE-2007-BLG-349(AB)b</span> Super Neptune orbiting the OGLE-2007-BLG-349 system

    OGLE-2007-BLG-349(AB)b is a circumbinary extrasolar planet about 8,000 light-years away in the constellation of Sagittarius. It is the first circumbinary exoplanet to be discovered using the microlensing method of detecting exoplanets.

    <span class="mw-page-title-main">OGLE-2016-BLG-1195Lb</span> Frigid super-Earth orbiting OGLE-2016-BLG-1195L

    OGLE-2016-BLG-1195Lb is an extrasolar planet located about 22,000 light-years from Earth, in the galactic bulge, orbiting the 0.57±0.06 M star OGLE-2016-BLG-1195L, discovered in 2017. The planet was detected using gravitational microlensing techniques managed by the Korea Astronomy and Space Science Institute and the Spitzer Space Telescope. Initially, it was believed the planet has a mass similar to Earth and is located about the same distance from its host star as the Earth is from the Sun, although it was expected to be much colder.

    OGLE-2016-BLG-1190Lb is an extremely massive exoplanet, with a mass about 13.4 times that of Jupiter (MJ), or is, possibly, a low mass brown dwarf, orbiting the G-dwarf star OGLE-2016-BLG-1190L, located about 22,000 light years from Earth, in the constellation of Sagittarius, in the galactic bulge of the Milky Way.

    OGLE-2018-BLG-1119Lb is a Jupiter-like gas giant exoplanet located 5,760 parsecs away, orbiting its host star at a distance of 4.06 AU and taking two years to complete one orbit. It is 0.91 times the mass of Jupiter. It was discovered in 2022 by gravitational microlensing.

    OGLE-2012-BLG-0950Lb is a sub-Saturn (super-Neptune)-type planet 2,600 parsecs (8,500 ly) away with 39 or 35 Earth masses. This type of planet was once thought to be extremely rare because of runaway gas accretion, which would create a gap between 4 and 8 Earth radii or 20 and 80 Earth masses, peaking around 32-64 Earth masses. The planet is 2.6 AU from its star. It is likely near-impossible to know much else about the planet's properties because it was detected by gravitational microlensing. The mass of the host star is approximately 0.56 solar masses. This exoplanet was the first to have its mass found out using only microlens parallax and lens flux.

    References

    1. 1 2 3 Zang, Weicheng; Shvartzvald, Yossi; Udalski, Andrzej; Yee, Jennifer C.; Lee, Chung-Uk; Sumi, Takahiro; Zhang, Xiangyu; Yang, Hongjing; Mao, Shude; Novati, Sebastiano Calchi; Gould, Andrew (August 2022). "OGLE-2018-BLG-0799Lb: a q∼2.7×10−3 planet with Spitzer parallax". Monthly Notices of the Royal Astronomical Society . 514 (4): 5952–5968. arXiv: 2010.08732 . Bibcode:2022MNRAS.514.5952Z. doi:10.1093/mnras/stac1631.
    2. "New sub-Saturn-mass exoplanet discovered". phys.org. Retrieved 26 November 2020.