OGLE-TR-113b

Last updated
OGLE-TR-113b
Exoplanet Comparison OGLE-TR-113 b.png
Size comparison of OGLE-TR-113b with Jupiter
Discovery
Discovered by Konacki et al. [1]
Discovery site Flag of Poland.svg  Poland [1]
Discovery datetransit found in 2002,
proved to be a planet
on 14 April 2004 [1]
Transit [1]
Orbital characteristics
0.0229 ± 0.0002 AU (3,426,000 ± 30,000 km) [2]
Eccentricity 0 [2]
1.4324757 ± 0.0000013 [2] d
Inclination 88.8 [2]
Star OGLE-TR-113
Physical characteristics
Mean radius
1.09 ±0.03 RJ
Mass 1.32 ±0.19 MJ

    OGLE-TR-113b is an extrasolar planet orbiting the star OGLE-TR-113.

    Contents

    In 2002 the Optical Gravitational Lensing Experiment (OGLE) detected periodic dimming in the star's light curve indicating a transiting, planetary-sized object. [3] Since low-mass red dwarfs and brown dwarfs may mimic a planet, radial velocity measurements were necessary to calculate the mass of the body. In 2004, the object was proved to be a new transiting extrasolar planet. [1]


    The planet has a mass 1.32 times that of Jupiter. Since the planet's inclination is known, the value is exact. It orbits the star (OGLE-TR-113) in an extremely close orbit, even closer than the famous planets 51 Pegasi b and HD 209458 b. The planet races around the star every 1.43 days. The radius of the planet is only 9% larger than Jupiter's, despite the heating effect by the star. Planets of its kind are sometimes called "super-hot Jupiters". [2]

    See also

    Related Research Articles

    <span class="mw-page-title-main">TrES-1b</span> Hot Jupiter orbiting TrES-1 in the constellation of Lyra

    TrES-1b is an extrasolar planet approximately 523 light-years away in the constellation of Lyra. The planet's mass and radius indicate that it is a Jovian planet with a similar bulk composition to Jupiter. Unlike Jupiter, but similar to many other planets detected around other stars, TrES-1 is located very close to its star, and belongs to the class of planets known as hot Jupiters. The planet was discovered orbiting around GSC 02652-01324.

    <span class="mw-page-title-main">Gliese 876</span> Star in the constellation Aquarius

    Gliese 876 is a red dwarf approximately 15 light-years away from Earth in the constellation of Aquarius. It is one of the closest known stars to the Sun confirmed to possess a planetary system with more than two planets, after Gliese 1061, YZ Ceti, Tau Ceti, and Luyten's Star; as of 2018, four extrasolar planets have been found to orbit the star. The planetary system is also notable for the orbital properties of its planets. It is the only known system of orbital companions to exhibit a near-triple conjunction in the rare phenomenon of Laplace resonance. It is also the first extrasolar system around a normal star with measured coplanarity. While planets b and c are located in the system's habitable zone, they are giant planets believed to be analogous to Jupiter.

    <span class="mw-page-title-main">OGLE-TR-122</span> Binary star in the constellation Carina

    OGLE-TR-122 is a binary stellar system containing one of the smallest main-sequence stars whose radius has been measured. It was discovered when the Optical Gravitational Lensing Experiment (OGLE) survey observed the smaller star eclipsing the larger primary. The orbital period is approximately 7.3 days. The system's primary is thought to resemble the Sun.

    OGLE-TR-111 is a yellow dwarf star approximately 5,000 light-years away in the constellation of Carina. Having an apparent magnitude of about 17, this distant and dim star has not yet been cataloged. Because its apparent brightness changes when one of its planets transits, the star has been given the variable star designation V759 Carinae.

    <span class="mw-page-title-main">OGLE-TR-10</span> Star in the constellation Sagittarius

    OGLE-TR-10 is a distant, magnitude 16 star in the constellation of Sagittarius. It is located near the Galactic Center. This star is listed as an eclipsing type variable star with the eclipse due to the passage of the planet as noted in the discovery papers.

    OGLE-TR-132 is a distant magnitude 15.72 star in the star fields of the constellation Carina. Because of its great distance, about 4,900 light-years, and location in the crowded field it was not notable in any way. Because its apparent brightness changes when one of its planets transits, the star has been given the variable star designation V742 Carinae. The spectral type of the star is type F. A yellow-white, very metal-rich dwarf star, it is slightly hotter and more luminous than the Sun.

    <span class="mw-page-title-main">OGLE-TR-10b</span> Hot Jupiter orbiting OGLE-TR-10

    OGLE-TR-10b is an extrasolar planet orbiting the star OGLE-TR-10.

    <span class="mw-page-title-main">Gravitational microlensing</span> Astronomical phenomenon due to the gravitational lens effect

    Gravitational microlensing is an astronomical phenomenon due to the gravitational lens effect. It can be used to detect objects that range from the mass of a planet to the mass of a star, regardless of the light they emit. Typically, astronomers can only detect bright objects that emit much light (stars) or large objects that block background light. These objects make up only a minor portion of the mass of a galaxy. Microlensing allows the study of objects that emit little or no light.

    <span class="mw-page-title-main">OGLE-2005-BLG-390L</span> Star in the constellation Scorpius

    OGLE-2005-BLG-390L is a star thought to be a spectral type M. This dim magnitude 16 galactic bulge star is located in the Scorpius constellation at a far distance of about 21,500 light years.

    <span class="mw-page-title-main">Optical Gravitational Lensing Experiment</span> Long-term variability sky survey

    The Optical Gravitational Lensing Experiment (OGLE) is a Polish astronomical project based at the University of Warsaw that runs a long-term variability sky survey (1992–present). The main goals are the detection and classification of variable stars, discovery of microlensing events, dwarf novae, and studies of the structure of the Galaxy and the Magellanic Clouds. Since the project began in 1992, it has discovered a multitude of extrasolar planets, together with the first planet discovered using the transit method (OGLE-TR-56b) and gravitational microlensing. The project has been led by professor Andrzej Udalski since its inception.

    OGLE-TR-56 is a dim, distant, magnitude 17 Sun-like star located approximately 1,500 parsecs away in the constellation of Sagittarius. This star is listed as an eclipsing type variable star with the eclipse due to the passage of the planet as noted in the discovery papers.

    <span class="mw-page-title-main">OGLE-TR-56b</span> Hot Jupiter orbiting OGLE-TR-56

    OGLE-TR-56b is an extrasolar planet located approximately 1500 parsecs or 5000 light years away in the constellation of Sagittarius, orbiting the star OGLE-TR-56. This planet was the first known exoplanet to be discovered with the transit method. The object was discovered by the OGLE project, announced on July 5, 2002 and confirmed on January 4, 2003 by the Doppler technique. The period of this confirmed planet was the shortest until the confirmed discovery of WASP-12b on April 1, 2008. The short period and proximity of the OGLE-TR-56 b to its host mean it belongs to a class of objects known as hot Jupiters.

    OGLE-2003-BLG-235L (MOA-2003-BLG-53L) is a star in the constellation of Sagittarius. The first gravitational microlensing event for which a planet orbiting the lens was detected around this star. The event occurred in during July 2003. Two groups observed and independently detected the event: the Optical Gravitational Lensing Experiment (OGLE) and the Microlensing Observations in Astrophysics (MOA), hence, the double designation. It is an orange dwarf star of spectral type K, which is accompanied by a giant planet.

    <span class="mw-page-title-main">Methods of detecting exoplanets</span> Overview of methods of detecting exoplanets

    Any planet is an extremely faint light source compared to its parent star. For example, a star like the Sun is about a billion times as bright as the reflected light from any of the planets orbiting it. In addition to the intrinsic difficulty of detecting such a faint light source, the light from the parent star causes a glare that washes it out. For those reasons, very few of the exoplanets reported as of April 2014 have been observed directly, with even fewer being resolved from their host star.

    OGLE-TR-113 is a dim, distant magnitude 16 binary star in the star fields of the constellation Carina. Because of its distance of about 1170 light years, and location in a crowded field it was not notable in any way. Its apparent brightness changes when one of its planets transits, so the star has been given the variable star designation V752 Carinae. Spectral type of the star is type K dwarf star, slightly cooler and less luminous than the Sun.

    OGLE-2005-BLG-071L is a distant, magnitude 19.5 galactic bulge star located in the constellation Scorpius, approximately 11,000 light years away from the Solar System. The star is probably a red dwarf with a mass 43% of that of the Sun.

    <span class="mw-page-title-main">OGLE-TR-111b</span> Hot Jupiter orbiting OGLE-TR-111

    OGLE-TR-111b is an extrasolar planet approximately 5,000 light-years away in the constellation of Carina. The planet is currently the only confirmed planet orbiting the star OGLE-TR-111.

    <span class="mw-page-title-main">OGLE-TR-132b</span>

    OGLE-TR-132b is an extrasolar planet orbiting the star OGLE-TR-132.

    The Microlensing Follow-Up Network is an informal group of observers who monitor high magnification gravitational microlensing events in the Milky Way's Galactic Bulge. Its goal is to detect extrasolar planets via microlensing of the parent star by the planet. μFUN is a follow-up network - they monitor microlensing events identified by survey groups such as OGLE and Microlensing Observations in Astrophysics (MOA).

    <span class="mw-page-title-main">Discoveries of exoplanets</span> Detecting planets located outside the Solar System

    An exoplanet is a planet located outside the Solar System. The first evidence of an exoplanet was noted as early as 1917, but was not recognized as such until 2016; no planet discovery has yet come from that evidence. What turned out to be the first detection of an exoplanet was published among a list of possible candidates in 1988, though not confirmed until 2003. The first confirmed detection came in 1992, with the discovery of terrestrial-mass planets orbiting the pulsar PSR B1257+12. The first confirmation of an exoplanet orbiting a main-sequence star was made in 1995, when a giant planet was found in a four-day orbit around the nearby star 51 Pegasi. Some exoplanets have been imaged directly by telescopes, but the vast majority have been detected through indirect methods, such as the transit method and the radial-velocity method. As of 1 February 2023, there are 5,307 confirmed exoplanets in 3,910 planetary systems, with 853 systems having more than one planet. This is a list of the most notable discoveries.

    References

    1. 1 2 3 4 5 Konacki, Maciej; et al. (2004). "The Transiting Extrasolar Giant Planet around the Star OGLE-TR-113". The Astrophysical Journal Letters. 609 (1): L37–L40. arXiv: astro-ph/0404541 . Bibcode:2004ApJ...609L..37K. doi:10.1086/422600. S2CID   14150198.
    2. 1 2 3 4 5 Gillon, M.; et al. (2006). "High accuracy transit photometry of the planet OGLE-TR-113b with a new deconvolution-based method". Astronomy and Astrophysics. 459 (1): 249–255. arXiv: astro-ph/0606395 . Bibcode:2006A&A...459..249G. doi:10.1051/0004-6361:20065844. S2CID   17856922.
    3. Udalski, A.; et al. (2002). "The Optical Gravitational Lensing Experiment. Planetary and Low-Luminosity Object Transits in the Carina Fields of the Galactic Disk". Acta Astronomica. 52 (4): 317–359. arXiv: astro-ph/0301210 . Bibcode:2002AcA....52..317U.

    Commons-logo.svg Media related to OGLE-TR-113 b at Wikimedia Commons