Operational data store

Last updated

An operational data store (ODS) is used for operational reporting and as a source of data for the enterprise data warehouse (EDW). It is a complementary element to an EDW in a decision support environment, and is used for operational reporting, controls, and decision making, as opposed to the EDW, which is used for tactical and strategic decision support.

Contents

An ODS is a database designed to integrate data from multiple sources for additional operations on the data, for reporting, controls and operational decision support. Unlike a production master data store, the data is not passed back to operational systems. It may be passed for further operations and to the data warehouse for reporting.

An ODS should not be confused with an enterprise data hub (EDH). An operational data store will take transactional data from one or more production systems and loosely integrate it, in some respects it is still subject oriented, integrated and time variant, but without the volatility constraints. This integration is mainly achieved through the use of EDW structures and content.

An ODS is not an intrinsic part of an EDH solution, although an EDH may be used to subsume some of the processing performed by an ODS and the EDW. An EDH is a broker of data. An ODS is certainly not.

Because the data originates from multiple sources, the integration often involves cleaning, resolving redundancy and checking against business rules for integrity. An ODS is usually designed to contain low-level or atomic (indivisible) data (such as transactions and prices) with limited history that is captured "real time" or "near real time" as opposed to the much greater volumes of data stored in the data warehouse generally on a less-frequent basis.

General use

The general purpose of an ODS is to integrate data from disparate source systems in a single structure, using data integration technologies like data virtualization, data federation, or extract, transform, and load (ETL). This will allow operational access to the data for operational reporting, master data or reference data management.

An ODS is not a replacement or substitute for a data warehouse or for a data hub but in turn could become a source.

See also

Further reading

Related Research Articles

<span class="mw-page-title-main">Data warehouse</span> Centralized storage of knowledge

In computing, a data warehouse, also known as an enterprise data warehouse (EDW), is a system used for reporting and data analysis and is considered a core component of business intelligence. Data warehouses are central repositories of integrated data from one or more disparate sources. They store current and historical data in one single place that are used for creating analytical reports for workers throughout the enterprise. This is beneficial for companies as it enables them to interrogate and draw insights from their data and make decisions.

Business intelligence (BI) comprises the strategies and technologies used by enterprises for the data analysis and management of business information. Common functions of business intelligence technologies include reporting, online analytical processing, analytics, dashboard development, data mining, process mining, complex event processing, business performance management, benchmarking, text mining, predictive analytics, and prescriptive analytics.

<span class="mw-page-title-main">Extract, transform, load</span> Procedure in computing

In computing, extract, transform, load (ETL) is a three-phase process where data is extracted, transformed and loaded into an output data container. The data can be collated from one or more sources and it can also be output to one or more destinations. ETL processing is typically executed using software applications but it can also be done manually by system operators. ETL software typically automates the entire process and can be run manually or on reoccurring schedules either as single jobs or aggregated into a batch of jobs.

<span class="mw-page-title-main">Data mart</span>

A data mart is a structure/access pattern specific to data warehouse environments, used to retrieve client-facing data. The data mart is a subset of the data warehouse and is usually oriented to a specific business line or team. Whereas data warehouses have an enterprise-wide depth, the information in data marts pertains to a single department. In some deployments, each department or business unit is considered the owner of its data mart including all the hardware, software and data. This enables each department to isolate the use, manipulation and development of their data. In other deployments where conformed dimensions are used, this business unit owner will not hold true for shared dimensions like customer, product, etc.

Business performance management (BPM), also known as corporate performance management (CPM) and enterprise performance management (EPM),) is a set of performance management and analytic processes that enables the management of an organization's performance to achieve one or more pre-selected goals.

<span class="mw-page-title-main">Decision support system</span> Information system that supports business or organizational decision-making activities

A decision support system (DSS) is an information system that supports business or organizational decision-making activities. DSSs serve the management, operations and planning levels of an organization and help people make decisions about problems that may be rapidly changing and not easily specified in advance—i.e. unstructured and semi-structured decision problems. Decision support systems can be either fully computerized or human-powered, or a combination of both.

Enterprise application integration (EAI) is the use of software and computer systems' architectural principles to integrate a set of enterprise computer applications.

William H. Inmon is an American computer scientist, recognized by many as the father of the data warehouse. Inmon wrote the first book, held the first conference, wrote the first column in a magazine and was the first to offer classes in data warehousing. Inmon created the accepted definition of what a data warehouse is - a subject oriented, nonvolatile, integrated, time variant collection of data in support of management's decisions. Compared with the approach of the other pioneering architect of data warehousing, Ralph Kimball, Inmon's approach is often characterized as a top-down approach.

Enterprise software, also known as enterprise application software (EAS), is computer software used to satisfy the needs of an organization rather than individual users. Such organizations include businesses, schools, interest-based user groups, clubs, charities, and governments. Enterprise software is an integral part of a (computer-based) information system; a collection of such software is called an enterprise system. These systems handle a number of operations in an organization to enhance the business and management reporting tasks. The systems must process the information at a relatively high speed and can be deployed across a variety of networks.

Data architecture consist of models, policies, rules, and standards that govern which data is collected and how it is stored, arranged, integrated, and put to use in data systems and in organizations. Data is usually one of several architecture domains that form the pillars of an enterprise architecture or solution architecture.

Data integration involves combining data residing in different sources and providing users with a unified view of them. This process becomes significant in a variety of situations, which include both commercial and scientific domains. Data integration appears with increasing frequency as the volume and the need to share existing data explodes. It has become the focus of extensive theoretical work, and numerous open problems remain unsolved. Data integration encourages collaboration between internal as well as external users. The data being integrated must be received from a heterogeneous database system and transformed to a single coherent data store that provides synchronous data across a network of files for clients. A common use of data integration is in data mining when analyzing and extracting information from existing databases that can be useful for Business information.

Real-time business intelligence (RTBI) is a concept describing the process of delivering business intelligence (BI) or information about business operations as they occur. Real time means near to zero latency and access to information whenever it is required.

In information science and information technology, single source of truth (SSOT) architecture, or single point of truth (SPOT) architecture, for information systems is the practice of structuring information models and associated data schemas such that every data element is mastered in only one place, providing data normalization to a canonical form. Any possible linkages to this data element are by reference only. Because all other locations of the data just refer back to the primary "source of truth" location, updates to the data element in the primary location propagate to the entire system, providing multiple advantages simultaneously: greater efficiency/productivity, easy prevention of mistaken inconsistencies, and greatly simplified version control. Without SSOT architecture, rampant forking impairs clarity and productivity, imposing laborious maintenance needs.

SAP IQ is a column-based, petabyte scale, relational database software system used for business intelligence, data warehousing, and data marts. Produced by Sybase Inc., now an SAP company, its primary function is to analyze large amounts of data in a low-cost, highly available environment. SAP IQ is often credited with pioneering the commercialization of column-store technology.

<span class="mw-page-title-main">Data vault modeling</span> Database modeling method

Data vault modeling, also known as common foundational warehouse architecture or common foundational modeling architecture, is a database modeling method that is designed to provide long-term historical storage of data coming in from multiple operational systems. It is also a method of looking at historical data that deals with issues such as auditing, tracing of data, loading speed and resilience to change as well as emphasizing the need to trace where all the data in the database came from. This means that every row in a data vault must be accompanied by record source and load date attributes, enabling an auditor to trace values back to the source. The concept was published in 2000 by Dan Linstedt.

<span class="mw-page-title-main">Vertica</span> Software company

Vertica Systems is an analytic database management software company. Vertica was founded in 2005 by the database researcher Michael Stonebraker, with Andrew Palmer as the founding CEO. Ralph Breslauer and Christopher P. Lynch served as later CEOs.

A staging area, or landing zone, is an intermediate storage area used for data processing during the extract, transform and load (ETL) process. The data staging area sits between the data source(s) and the data target(s), which are often data warehouses, data marts, or other data repositories.

Data virtualization is an approach to data management that allows an application to retrieve and manipulate data without requiring technical details about the data, such as how it is formatted at source, or where it is physically located, and can provide a single customer view of the overall data.

The following is provided as an overview of and topical guide to databases:

In the fields of information technology (IT) and systems management, IT operations analytics (ITOA) is an approach or method to retrieve, analyze, and report data for IT operations. ITOA may apply big data analytics to large datasets to produce business insights. In 2014, Gartner predicted its use might increase revenue or reduce costs. By 2017, it predicted that 15% of enterprises will use IT operations analytics technologies.