Oral ecology

Last updated

Oral ecology is the microbial ecology of the microorganisms found in mouths. Oral ecology, like all forms of ecology, involves the study of the living things found in oral cavities as well as their interactions with each other and with their environment. Oral ecology is frequently investigated from the perspective of oral disease prevention, often focusing on conditions such as dental caries (or "cavities"), candidiasis ("thrush"), gingivitis, periodontal disease, and others. However, many of the interactions between the microbiota and oral environment protect from disease and support a healthy oral cavity. Interactions between microbes and their environment can result in the stabilization or destabilization of the oral microbiome, with destabilization believed to result in disease states. Destabilization of the microbiome can be influenced by several factors, including diet changes, drugs or immune system disorders.

Contents

History

Bacteria were first detected under the microscope of Dutch scientist Anton van Leeuwenhoek in the late 17th century from his own healthy human oral sample. [1] After using this technology on a healthy sample, Leeuwenhoek applied his tool to the decayed tooth matter of his wife, where he noted that the organisms present were highly similar to those found in cheese. [1] These are believed to likely have been lactic acid bacteria, however the link between bacterial acid production and tooth decay was not further uncovered until much later. After this discovery and the further development of microscopy, bacteria was found within tooth cavities by multiple scientists throughout the 19th century. [2] [3] [4] [5] [6] [7] Willoughby Miller was the first recorded oral microbiologist, and he performed much of his foundational microbiology research in the laboratory of famed microbiologist Robert Koch. In this time, Miller generated the chemo-parasitic (also referred to as "acidogenic") theory of caries, which proposed that tooth decay is initiated by bacterial acid production on the surface of teeth. [8] This theory is considered to be foundational to the field of dentistry as well as oral ecology, by drawing connections between the activities of microbial entities and its effects on their non-living microscopic environment. [2] [9]

In ecological terms, early work in oral microbiology largely falls into a category of microbial research now described as "reductionist", generally meaning it focused heavily on the isolation of individual microbes before observation or testing. [10] It wasn't until the late 20th century that "holistic" approaches to oral microbiology were coming into the mainstream, and thus microbial ecology was intentionally studied. Holistic microbiology considers not only an organism of interest but also the biological and abiotic context in which the organism naturally is found. Scientist Philip Marsh is credited with developing the ecological plaque hypothesis in 1994, in which he ideated that dental plaque can be both normal and healthy as well as "cariogenic" (creates cavities), depending on the microbial community (or "consortia") present in the biofilm and the community's stability. [11] Furthermore, in his theory, Marsh links the exposure of nonliving environmental influences on the microbial community to the selection and change in microbial constituents that can cause cariogenic conditions.

Oral environment

Teeth, saliva, and oral tissues are the major components of the oral environment in which the oral microbiome resides. Like most environments, some oral environments, such as teeth and saliva, are abiotic (non-living), and some are living, such as the host immune system or host mouth mucosal tissues- including gums, cheek ("buccal") and tongue (when present).

Abiotic

Saliva holds multiple roles in oral ecology. For example, it creates a physical disturbance to microbes through a washing action. Increase in saliva flow via stimulation (i.e. chewing gum) has been shown to diminish cariogenic plaque formation. [12] Saliva is also largely responsible for environmental pH, water content, nutrients, and host-produced immune cells and antimicrobials. One major antimicrobial found in saliva (as well as mucus) is lysozyme, an enzyme that shears bacterial cells. Another critical role that saliva plays in the microscopic environment is supplying the glycoproteins bacteria use to cling to the surface of teeth. [12] [13] [14]

Teeth are another example of the abiotic environmental factors involved in oral ecology. Bacteria settle on the tooth surface as a solid substrate on which they grow. Compared to floating in saliva, bacteria on teeth gain environmental stability so that they experience a consistent environment of temperature, relative oxygen exposure, nutrient density, physical disturbances, etc. While teeth provide stability to the microbial community, the overgrowth of bacteria is known to result in tooth decay primarily due to acid production from sugar-consuming fermentative metabolisms. Some organisms associated with this condition are lactobacilli , which produce the lactic acid that breaks down tooth enamel. As a result, host diet also influences the ecology of the mouth by altering saliva pH and nutrient content. As a result the microbial life interacts with the oral environment.

Oxygen content is a major variable that can influence the type of microbial flora present in the oral cavity. This variable is slightly unique to the oral cavity due to its exposure to the outside of the host body. In ecology, niches are a set of conditions that can be associated with the presence of a certain organism. Thus, oxygen concentration variation throughout the mouth can be a factor in niche differentiation within this environment. At the microscopic scale, oxygen concentration can dictate where in the mouth aerobic, anaerobic, facultative anaerobic, aerotolerant, or microaerophilic microbes grow or form biofilm. Biofilms themselves can help regulate oxygen exposure and keep anaerobic organisms at the interior, adding to the complexity of the niches within the oral cavity.

Another abiotic environmental influence on oral ecology includes the use of drugs, especially antibiotics and orally-administered antibiotics. Antibiotics can kill oral bacteria as well as cause secondary environmental effects such as a decrease in saliva, leading to further changes in the abiotic microenvironment. [15] The destabilization of the bacteria in a microbiome which results in disease is known as bacterial dysbiosis. For example, the destabilization of the bacterial community in the mouth can lead to a bloom in fungal communities, resulting in diseases such as thrush. [16] Furthermore, the development of antibiotic-resistant populations in response to the treatment can result in an overpopulation of the resistant bacteria after treatment is completed, disturbing the relative abundances found pre-treatment.  

Biotic (non-bacterial)

The host of the oral cavity in which the oral ecology is studied is also of importance. This is an example of a biotic, or living, environmental factor. General host health and immune system function is critical to oral microflora, as it determines which microbes are able to survive in the mouth. The innate immune system, which operates in animals continuously regardless of the presence of disease, is most relevant due to its constant role in oral ecology both in healthy and unhealthy hosts. This includes the production of free-floating antibodies, macrophages, and other immune cells present in saliva. At a healthy, stable state, the host immune system permits the colonization of certain microbes by not targeting them. This can be described as "immune equilibrium", or the conditions where the host and the microbiota in the oral microbiome symbiose. [17]

Human

Bacterial

In microbial ecology, the principle of priority effect refers to the competitive advantage some microorganisms gain by colonizing a surface first. [18] It is generally believed that primary colonization occurs by transmission from the mother or their breastmilk (vertical transmission), as well as the environment of the newborn (horizontal transmission). [18] [19] It has been found that at different locations in the oral cavity, different microbes are early colonizers. [17] [18] [20] The very initial colonizers of teeth are considered to be Streptococcus, a genus of bacteria that are usually facultative anaerobes that can grow in both aerobic and anaerobic conditions. This is advantageous in an environment that is variably exposed to oxygen throughout the day as well as throughout the oral cavity. Despite over 700 unique species of bacteria being associated with the human mouth, in tooth plaque only between 7-9 "major players" have been repeatedly identified as early colonizers, including Actinomyces , Streptococcus , Neisseria , and Veillonella species. [21] [2] It is believed that the colonization of these specific genera of bacteria influence the stability and homeostasis of the resulting oral microflora. [22] This colonization occurs by the construction of and adhesion to a pellicle made of glycoproteins from host saliva. [12] [13] [14] Upon adhesion to the pellicle, early colonizing bacteria begin to produce the biofilm intended to anchor the colony to the tooth. As is common in microbiomes, this biofilm does not remain a single genera or species. In fact, the vast majority of relevant microbes perform co-aggregation within a biofilm. [23] [20] [24] However, it is understood that not all microbes will co-aggregate together, and ammensal activity does occur between specific species, such as S. mutans and P. gingivalis . [14] The interbacterial interactions as well as the interactions with the host teeth, oxygen conditions, and saliva are what compose bacterial oral ecology.  

Nonbacterial

Bacteria, while being the most abundant, are not the only kind of microbiota present in the oral cavity. Fungal/yeast cells are also present, particularly including the genus Candida . The yeast species C. albicans and C. tropicalis are known as commensals in the human mouth, which means that they are a part of normal flora that engages in a mutually-beneficial relationship with its host. [25] They are the most abundant non-bacterial microbes isolated from the human mouth. As described in the above section, co-aggregation within a biofilm is not uncommon, including the cohabitation of yeasts with bacteria. [26] Candida albicans is known to selectively participate in "dual-species" biofilms with certain species of Streptococcus bacteria through the actual attachment of the yeast to the bacterial cell surface. [27] [28] This allows the yeast to be anchored to the tooth surface indirectly to gain stability.

Some other, but significantly less abundant, non-bacterial microbes in the human mouth include the fungi genera Cryptococcus, Aspergillus, and Fusarium . [29]

Related Research Articles

<span class="mw-page-title-main">Biofilm</span> Aggregation of bacteria or cells on a surface

A biofilm is an syntrophic community of microorganisms in which cells stick to each other and often also to a surface. These adherent cells become embedded within a slimy extracellular matrix that is composed of extracellular polymeric substances (EPSs). The cells within the biofilm produce the EPS components, which are typically a polymeric combination of extracellular polysaccharides, proteins, lipids and DNA. Because they have three-dimensional structure and represent a community lifestyle for microorganisms, they have been metaphorically described as "cities for microbes".

<i>Lactobacillus</i> Genus of bacteria

Lactobacillus is a genus of gram-positive, aerotolerant anaerobes or microaerophilic, rod-shaped, non-spore-forming bacteria. Until 2020, the genus Lactobacillus comprised over 260 phylogenetically, ecologically, and metabolically diverse species; a taxonomic revision of the genus assigned lactobacilli to 25 genera.

<span class="mw-page-title-main">Human microbiome</span> Microorganisms in or on human skin and biofluids

The human microbiome is the aggregate of all microbiota that reside on or within human tissues and biofluids along with the corresponding anatomical sites in which they reside, including the skin, mammary glands, seminal fluid, uterus, ovarian follicles, lung, saliva, oral mucosa, conjunctiva, biliary tract, and gastrointestinal tract. Types of human microbiota include bacteria, archaea, fungi, protists, and viruses. Though micro-animals can also live on the human body, they are typically excluded from this definition. In the context of genomics, the term human microbiome is sometimes used to refer to the collective genomes of resident microorganisms; however, the term human metagenome has the same meaning.

<span class="mw-page-title-main">Calculus (dental)</span> Form of hardened dental plaque

In dentistry, calculus or tartar is a form of hardened dental plaque. It is caused by precipitation of minerals from saliva and gingival crevicular fluid (GCF) in plaque on the teeth. This process of precipitation kills the bacterial cells within dental plaque, but the rough and hardened surface that is formed provides an ideal surface for further plaque formation. This leads to calculus buildup, which compromises the health of the gingiva (gums). Calculus can form both along the gumline, where it is referred to as supragingival, and within the narrow sulcus that exists between the teeth and the gingiva, where it is referred to as subgingival.

<span class="mw-page-title-main">Tooth decay</span> Deformation of teeth due to acids produced by bacteria

Tooth decay, also known as cavities or caries, is the breakdown of teeth due to acids produced by bacteria. The cavities may be a number of different colors from yellow to black. Symptoms may include pain and difficulty with eating. Complications may include inflammation of the tissue around the tooth, tooth loss and infection or abscess formation.

<i>Streptococcus mutans</i> Species of bacterium

Streptococcus mutans is a facultatively anaerobic, gram-positive coccus commonly found in the human oral cavity and is a significant contributor to tooth decay. It is part of the "streptococci", an informal general name for all species in the genus Streptococcus. The microbe was first described by James Kilian Clarke in 1924.

Periodontology or periodontics is the specialty of dentistry that studies supporting structures of teeth, as well as diseases and conditions that affect them. The supporting tissues are known as the periodontium, which includes the gingiva (gums), alveolar bone, cementum, and the periodontal ligament. A periodontist is a dentist that specializes in the prevention, diagnosis and treatment of periodontal disease and in the placement of dental implants.

Dental plaque is a biofilm of microorganisms that grows on surfaces within the mouth. It is a sticky colorless deposit at first, but when it forms tartar, it is often brown or pale yellow. It is commonly found between the teeth, on the front of teeth, behind teeth, on chewing surfaces, along the gumline (supragingival), or below the gumline cervical margins (subgingival). Dental plaque is also known as microbial plaque, oral biofilm, dental biofilm, dental plaque biofilm or bacterial plaque biofilm. Bacterial plaque is one of the major causes for dental decay and gum disease.

Dysbiosis is characterized by a disruption to the microbiome resulting in an imbalance in the microbiota, changes in their functional composition and metabolic activities, or a shift in their local distribution. For example, a part of the human microbiota such as the skin flora, gut flora, or vaginal flora, can become deranged, with normally dominating species underrepresented and normally outcompeted or contained species increasing to fill the void. Similar to the human gut microbiome, diverse microbes colonize the plant rhizosphere, and dysbiosis in the rhizosphere, can negatively impact plant health. Dysbiosis is most commonly reported as a condition in the gastrointestinal tract or plant rhizosphere.

<i>Streptococcus oralis</i> Species of bacterium

Streptococcus oralis is a Gram positive viridans streptococcus of the Streptococcus mitis group. S. oralis is one of the pioneer species associated with eubiotic dental pellicle biofilms, and can be found in high numbers on most oral surfaces. It has been, however, found to be an opportunistic pathogen as well.

<span class="mw-page-title-main">Oral microbiology</span>

Oral microbiology is the study of the microorganisms (microbiota) of the oral cavity and their interactions between oral microorganisms or with the host. The environment present in the human mouth is suited to the growth of characteristic microorganisms found there. It provides a source of water and nutrients, as well as a moderate temperature. Resident microbes of the mouth adhere to the teeth and gums to resist mechanical flushing from the mouth to stomach where acid-sensitive microbes are destroyed by hydrochloric acid.

<span class="mw-page-title-main">Oral hygiene</span> Cleaning the mouth by brushing the teeth and cleaning in between the teeth

Oral hygiene is the practice of keeping one's oral cavity clean and free of disease and other problems by regular brushing of the teeth and adopting good hygiene habits. It is important that oral hygiene be carried out on a regular basis to enable prevention of dental disease and bad breath. The most common types of dental disease are tooth decay and gum diseases, including gingivitis, and periodontitis.

<span class="mw-page-title-main">Microbiota</span> Community of microorganisms

Microbiota are the range of microorganisms that may be commensal, mutualistic, or pathogenic found in and on all multicellular organisms, including plants. Microbiota include bacteria, archaea, protists, fungi, and viruses, and have been found to be crucial for immunologic, hormonal, and metabolic homeostasis of their host.

<i>Porphyromonas</i> Genus of bacteria

Porphyromonas is a Gram-negative, non-spore-forming, obligately anaerobic and non-motile genus from the family Porphyromonadaceae. There were 16 different Porphyromonas species documented as of 2015, which reside in both animal and human reservoirs. It was discovered more recently that Porphyromonas also exist in the environment, albeit to a lesser extent. This genus is notably implicated in the modulation of oral cavity, respiratory tract, and gastrointestinal tract disease states. It is suggested that Porphyromonas either operate as benign bacteria pertinent to host immunity or are potential pathobionts that opportunistically provoke diseased states when homeostasis is disrupted. Despite its characterization not being fully elucidated due to sparse research, various studies report the prevalence of this genus at 58.7% in healthy states compared with 41.3% in diseased states.

<span class="mw-page-title-main">Microbiome</span> Microbial community assemblage and activity

A microbiome is the community of microorganisms that can usually be found living together in any given habitat. It was defined more precisely in 1988 by Whipps et al. as "a characteristic microbial community occupying a reasonably well-defined habitat which has distinct physio-chemical properties. The term thus not only refers to the microorganisms involved but also encompasses their theatre of activity". In 2020, an international panel of experts published the outcome of their discussions on the definition of the microbiome. They proposed a definition of the microbiome based on a revival of the "compact, clear, and comprehensive description of the term" as originally provided by Whipps et al., but supplemented with two explanatory paragraphs. The first explanatory paragraph pronounces the dynamic character of the microbiome, and the second explanatory paragraph clearly separates the term microbiota from the term microbiome.

Plaque hypotheses are theories to explain the role of plaque bacteria in dental caries and in periodontitis. They rely heavily on the postulates of Koch and on the work of Louis Pasteur (1822–1895). Changing perceptions have altered treatment models.

<span class="mw-page-title-main">Salivary microbiome</span>

The salivary microbiome consists of the nonpathogenic, commensal bacteria present in the healthy human salivary glands. It differs from the oral microbiome which is located in the oral cavity. Oral microorganisms tend to adhere to teeth. The oral microbiome possesses its own characteristic microorganisms found there. Resident microbes of the mouth adhere to the teeth and gums. "[T]here may be important interactions between the saliva microbiome and other microbiomes in the human body, in particular, that of the intestinal tract."

TM7x, also known as Nanosynbacter lyticus type strain TM7x HMT 952. is a phylotype of one of the most enigmatic phyla, Candidatus Saccharibacteria, formerly candidate phylum TM7. It is the only member of the candidate phylum that has been cultivated successfully from the human oral cavity, and stably maintained in vitro. and serves as a crucial paradigm. of the newly described Candidate Phyla Radiation (CPR). The cultivated oral taxon is designated as Saccharibacteria oral taxon TM7x. TM7x has a unique lifestyle in comparison to other bacteria that are associated with humans. It is an obligate epibiont parasite, or an "epiparasite", growing on the surface of its host bacterial species Actinomyces odontolyticus subspecies actinosynbacter strain XH001, which is referred to as the "basibiont". Actinomyces species are one of the early microbial colonizers in the oral cavity. Together, they exhibit parasitic epibiont symbiosis.

<span class="mw-page-title-main">Marine microbiome</span>

All animals on Earth form associations with microorganisms, including protists, bacteria, archaea, fungi, and viruses. In the ocean, animal–microbial relationships were historically explored in single host–symbiont systems. However, new explorations into the diversity of marine microorganisms associating with diverse marine animal hosts is moving the field into studies that address interactions between the animal host and a more multi-member microbiome. The potential for microbiomes to influence the health, physiology, behavior, and ecology of marine animals could alter current understandings of how marine animals adapt to change, and especially the growing climate-related and anthropogenic-induced changes already impacting the ocean environment.

<span class="mw-page-title-main">Evolution of the human oral microbiome</span>

The evolution of the human oral microbiome is the study of microorganisms in the oral cavity and how they have adapted over time. There are recent advancements in ancient dental research that have given insight to the evolution of the human oral microbiome. Using these techniques it is now known what metabolite classes have been preserved and the difference in genetic diversity that exists from ancient to modern microbiota. The relationship between oral microbiota and its human host has changed and this transition can directly be linked to common diseases in human evolutionary past. Evolutionary medicine provides a framework for reevaluating oral health and disease and biological anthropology provides the context to identify the ancestral human microbiome. These disciplines together give insights into the oral microbiome and can potentially help contribute to restoring and maintaining oral health in the future.

References

  1. 1 2 van Leeuwenhoek A (27 July 1700). "A letter to the royal society". Philosophical Transactions of the Royal Society of London. Smith & Walford. 265: 635.
  2. 1 2 3 He XS, Shi WY (June 2009). "Oral microbiology: past, present and future". International Journal of Oral Science. 1 (2): 47–58. doi:10.4248/ijos.09029. PMC   2949409 . PMID   20687296.
  3. Abbott F (1879). "Caries of Human Teeth". Dental Cosmos. 21 (2): 113–119.
  4. Black GV (1884). The Formation of Poisons by Microorganisms: A Biological Study of the Germ Theory of Disease. Philadelphia, PA: P. Blakiston, Son & Company.
  5. Williams JL (1897). "A contribution to the study of pathology of enamel". Dental Cosmos. 39 (3): 169–196.
  6. Webb MH (1883). Notes on Operative Dentistry. Philadelphia, PA: The S. S. White Dental Manufacturing Company.
  7. Ruby JD, Cox CF, Akimoto N, Meada N, Momoi Y (2010). "The Caries Phenomenon: A Timeline from Witchcraft and Superstition to Opinions of the 1500s to Today's Science". International Journal of Dentistry. 2010: 432767. doi: 10.1155/2010/432767 . PMC   2913523 . PMID   20706536.
  8. Miller WD (1890). Micro-Organisms of the Human Mouth. Philadelphia, PA: The S. S. White Dental Manufacturing Company.
  9. Rossomando EF (2020). "The Influence of Miller's Chemo-Parasitic Theory on 20th Century Clinical Dentistry and Dental Research". Dental Hypotheses. 11 (2): 31. doi: 10.4103/denthyp.denthyp_39_20 . ISSN   2155-8213. S2CID   219709808.
  10. Tecon R, Mitri S, Ciccarese D, Or D, van der Meer JR, Johnson DR (2019-02-26). "Bridging the Holistic-Reductionist Divide in Microbial Ecology". mSystems. 4 (1). doi:10.1128/msystems.00265-18. PMC   6365645 . PMID   30746494.
  11. Marsh PD (July 1994). "Microbial ecology of dental plaque and its significance in health and disease". Advances in Dental Research. 8 (2): 263–271. doi:10.1177/08959374940080022001. PMID   7865085. S2CID   32327358.
  12. 1 2 3 Tiwari M (January 2011). "Science behind human saliva". Journal of Natural Science, Biology, and Medicine. 2 (1): 53–58. doi: 10.4103/0976-9668.82322 . PMC   3312700 . PMID   22470235.
  13. 1 2 Liljemark WF, Bloomquist C (April 1996). "Human oral microbial ecology and dental caries and periodontal diseases". Critical Reviews in Oral Biology and Medicine. 7 (2): 180–198. doi: 10.1177/10454411960070020601 . PMID   8875032.
  14. 1 2 3 Hojo K, Nagaoka S, Ohshima T, Maeda N (November 2009). "Bacterial interactions in dental biofilm development". Journal of Dental Research. 88 (11): 982–990. doi:10.1177/0022034509346811. PMID   19828884. S2CID   25071650.
  15. Cheng X, He F, Si M, Sun P, Chen Q (2022-01-31). "Effects of Antibiotic Use on Saliva Antibody Content and Oral Microbiota in Sprague Dawley Rats". Frontiers in Cellular and Infection Microbiology. 12: 721691. doi: 10.3389/fcimb.2022.721691 . PMC   8843035 . PMID   35174102.
  16. Hofer U (July 2022). "How antibiotics predispose to candidiasis". Nature Reviews. Microbiology. 20 (7): 382. doi:10.1038/s41579-022-00749-2. PMID   35595852. S2CID   248947826.
  17. 1 2 Yu JC, Khodadadi H, Baban B (March 2019). "Innate immunity and oral microbiome: a personalized, predictive, and preventive approach to the management of oral diseases". The EPMA Journal. 10 (1): 43–50. doi:10.1007/s13167-019-00163-4. PMC   6459445 . PMID   30984313.
  18. 1 2 3 Nappi J, Goncalves P, Khan T, Majzoub ME, Grobler AS, Marzinelli EM, et al. (January 2022). "Differential priority effects impact taxonomy and functionality of host-associated microbiomes". Molecular Ecology. 32 (23): 6278–6293. doi:10.1111/mec.16336. PMID   34995388.
  19. Holgerson PL, Vestman NR, Claesson R, Ohman C, Domellöf M, Tanner AC, et al. (February 2013). "Oral microbial profile discriminates breast-fed from formula-fed infants". Journal of Pediatric Gastroenterology and Nutrition. 56 (2): 127–136. doi:10.1097/MPG.0b013e31826f2bc6. PMC   3548038 . PMID   22955450.
  20. 1 2 Simón-Soro A, Tomás I, Cabrera-Rubio R, Catalan MD, Nyvad B, Mira A (July 2013). "Microbial geography of the oral cavity". Journal of Dental Research. 92 (7): 616–621. doi:10.1177/0022034513488119. PMID   23674263. S2CID   34725297.
  21. Babaahmady KG, Marsh PD, Challacombe SJ, Newman HN (February 1997). "Variations in the predominant cultivable microflora of dental plaque at defined subsites on approximal tooth surfaces in children". Archives of Oral Biology. 42 (2): 101–111. doi:10.1016/S0003-9969(96)00116-1. PMID   9134122.
  22. McLean JS (2014). "Advancements toward a systems level understanding of the human oral microbiome". Frontiers in Cellular and Infection Microbiology. 4: 98. doi: 10.3389/fcimb.2014.00098 . ISSN   2235-2988. PMC   4114298 . PMID   25120956.
  23. Ferrer MD, Mira A (April 2016). "Oral Biofilm Architecture at the Microbial Scale". Trends in Microbiology. 24 (4): 246–248. doi:10.1016/j.tim.2016.02.013. PMID   26962018.
  24. Zijnge V, van Leeuwen MB, Degener JE, Abbas F, Thurnheer T, Gmür R, Harmsen HJ (February 2010). "Oral biofilm architecture on natural teeth". PLOS ONE. 5 (2): e9321. Bibcode:2010PLoSO...5.9321Z. doi: 10.1371/journal.pone.0009321 . PMC   2827546 . PMID   20195365.
  25. Cannon RD, Chaffin WL (June 1999). "Oral colonization by Candida albicans". Critical Reviews in Oral Biology and Medicine. 10 (3): 359–383. doi: 10.1177/10454411990100030701 . PMID   10759414.
  26. Holmes AR, Cannon RD, Jenkinson HF (September 1995). "Interactions of Candida albicans with bacteria and salivary molecules in oral biofilms". Journal of Industrial Microbiology. 15 (3): 208–213. doi:10.1007/BF01569827. PMID   8519479. S2CID   7278060.
  27. Montelongo-Jauregui D, Saville SP, Lopez-Ribot JL (June 2019). "Contributions of Candida albicans Dimorphism, Adhesive Interactions, and Extracellular Matrix to the Formation of Dual-Species Biofilms with Streptococcus gordonii". mBio. 10 (3): e01179–19. doi:10.1128/mBio.01179-19. PMC   6581863 . PMID   31213561.
  28. O'Sullivan JM, Jenkinson HF, Cannon RD (January 2000). "Adhesion of Candida albicans to oral streptococci is promoted by selective adsorption of salivary proteins to the streptococcal cell surface". Microbiology. 146 (Pt 1): 41–48. doi: 10.1099/00221287-146-1-41 . PMID   10658650.
  29. Baumgardner DJ (2019-10-28). "Oral Fungal Microbiota: To Thrush and Beyond". Journal of Patient-Centered Research and Reviews. 6 (4): 252–261. doi:10.17294/2330-0698.1705. PMC   6827844 . PMID   31768404.

Further reading