Orfordness Beacon

Last updated

The Orfordness Beacon as it appeared in 2008. The 'Black Beacon', Orford Ness - geograph.org.uk - 935140.jpg
The Orfordness Beacon as it appeared in 2008.
Orfordness Beacon
Invisible Square.svg
Invisible Square.svg
Mapscaleline.svg
2km
1.2miles
N
O
R
T
H
S
E
A
Red pog.svg
Jetty
Red pog.svg
Red pog.svg
'Pagodas'
Orford Ness
National Nature
Reserve
Invisible Square.svg
Red pog.svg
Orfordness Beacon
Invisible Square.svg
Red pog.svg
transmitting
station
Invisible Square.svg
Red pog.svg
Havergate
Island (RSPB)
Invisible Square.svg
Red pog.svg
Cobra Mist
Invisible Square.svg
R i v e r   A l d e
Invisible Square.svg
R i v e r   O r e
Invisible Square.svg
Red pog.svg
Lighthouse
Invisible Square.svg
Red pog.svg
Castle
Invisible Square.svg
Orford Ness, Suffolk, showing locations of main sites. [1]

The Orfordness Rotating Wireless Beacon, known simply as the Orfordness Beacon or sometimes the Black Beacon, was an early radio navigation system introduced by the United Kingdom in July 1929. It allowed the angle to the station to be measured from any aircraft or ship with a conventional radio receiver, and was accurate to about a degree. A second station operating on the same principle was set up to provide wider area coverage and allow two-bearing fixes between Orford Ness and Farnborough Airport. The system was similar to the earlier German Telefunken Kompass Sender and the later Sonne system.

Contents

Description

Background

In navigation, the determination of a "fix" requires two measurements to be taken. Using classical triangulation techniques, this was normally the measurement of two angles, or bearings , along the line-of-sight to prominent landmarks, like a lighthouse. After taking the two measurements, lines of position are drawn radiating from the landmark along the reverse angle. They will cross at some point, and their intersection determines the location of the navigator. [2]

RDF

The introduction of portable radio systems in the early 20th century gave rise to the possibility of using radio broadcasters ( beacons ) as a landmark that would be visible to a radio receiver at very great ranges, hundreds of miles or more. The angle between the navigator and the beacon can be taken by using a simple mechanism known as a loop antenna which can be rotated around the vertical axis. As the antenna is rotated, the strength of the received signal varies, and drops to zero (the null) when the loop is perpendicular to the line to the beacon. [3]

This technique, known as radio direction finding (RDF), is useful but only moderately accurate. Measurements better than a few degrees are difficult with a small antenna, and because of the electrical characteristics, it is not always easy to make a larger version that might provide more accuracy. Moreover, the addition of a loop antenna may be difficult on smaller vehicles, or difficult to operate for those without a dedicated navigator. [3]

Orfordness' solution

The Orfordness Beacon was a simple solution to these problems, which essentially moved the loop antenna from the vehicle to the beacon. The station broadcast a continuous AM longwave signal at 288.5 kHz (1040 m) through a large loop antenna which was mechanically rotated at 1 rpm, or 6 degrees a second. [4] As the antenna passed north, the signal was briefly keyed with the morse code signal for the letter "V" (dot-dot-dot-dash), before returning again to a continuous signal. [4]

At two points during the antenna's rotation, it would be perpendicular to the receiver. During these instants, the audible signal would disappear, an event known as a "null". Navigation using the Orfordness Beacon was quite simple. Navigators simply tuned in the station on their radios and waited for the V signal to be broadcast. They noted the time of the V and counted off the seconds until they heard the null. This could be easily accomplished with the use of a stopwatch. The time in seconds between the ending of the V and hearing the null was then multiplied by 6 to produce the angle from the station to the receiver. [4]

This led to the possibility of the user being confused as to which null they were located on, as there are two, located 180 degrees apart (either side of the antenna). In practice this is a relatively minor concern, as traditional navigation methods are normally able to resolve this discrepancy – only one of the angles makes sense at a given time. [4] In order to help resolve even this minor problem, the system also broadcast the letter "B" (dash-dot-dot-dot) as it passed east, helping the listener to identify the lobes. This also served the purpose of allowing the navigator to check that the system was operating properly by timing the period between the V and B, and checking that it was the expected 15 seconds. [5]

System construction and expansion

Looking north-east toward the Beacon, with its powerhouse to the right and barracks to the left. The now-demolished Orfordness Lighthouse, once also a racon beacon, is on the far right. Orford Ness 23.jpg
Looking north-east toward the Beacon, with its powerhouse to the right and barracks to the left. The now-demolished Orfordness Lighthouse, once also a racon beacon, is on the far right.

The original Orfordness Beacon was constructed in a small building that looked similar to the lower portion of a Dutch windmill. Painted black, it remains a prominent landmark today. The system went online in July 1929. [6]

The Orfordness Beacon did not broadcast continuously, but on a five-minute on-off pattern. This allowed for the construction of a second Beacon at RAE Farnborough, south-west of London. The Farnborough station broadcast on the same frequency as Orford, using the letters "G" (dash-dash-dot) for north and "W" (dot-dash-dash) for east. Orfordness broadcast on the first five minutes of every ten-minute period, and Farnborough on the second five minutes. Operations started in early 1930, but was first used only experimentally, for short periods on weekdays. [5]

Accuracy

A report compiled for the Merchant Marine demonstrated an effective range of about 100 miles, day or night. During the day, a minimum accuracy of 2 degrees measured, and 1 degree was common. However, at night the system degraded considerably, with measurement errors as great as 20 degrees. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Radio navigation</span> Use of radio-frequency electromagnetic waves to determine position on the Earths surface

Radio navigation or radionavigation is the application of radio frequencies to determine a position of an object on the Earth, either the vessel or an obstruction. Like radiolocation, it is a type of radiodetermination.

<span class="mw-page-title-main">Medium frequency</span> The range 300-3000 kHz of the electromagnetic spectrum

Medium frequency (MF) is the ITU designation for radio frequencies (RF) in the range of 300 kilohertz (kHz) to 3 megahertz (MHz). Part of this band is the medium wave (MW) AM broadcast band. The MF band is also known as the hectometer band as the wavelengths range from ten to one hectometers. Frequencies immediately below MF are denoted as low frequency (LF), while the first band of higher frequencies is known as high frequency (HF). MF is mostly used for AM radio broadcasting, navigational radio beacons, maritime ship-to-shore communication, and transoceanic air traffic control.

The Battle of the Beams was a period early in the Second World War when bombers of the German Air Force (Luftwaffe) used a number of increasingly accurate systems of radio navigation for night bombing in the United Kingdom. British scientific intelligence at the Air Ministry fought back with a variety of their own increasingly effective means, involving jamming and deception signals. The period ended when the Wehrmacht moved their forces to the East in May 1941, in preparation for the attack on the Soviet Union.

<span class="mw-page-title-main">Instrument landing system</span> Ground-based visual aid for landing

In aviation, the instrument landing system (ILS) is a precision radio navigation system that provides short-range guidance to aircraft to allow them to approach a runway at night or in bad weather. In its original form, it allows an aircraft to approach until it is 200 feet (61 m) over the ground, within a 12 mile (800 m) of the runway. At that point the runway should be visible to the pilot; if it is not, they perform a missed approach. Bringing the aircraft this close to the runway dramatically increases the range of weather conditions in which a safe landing can be made. Other versions of the system, or "categories", have further reduced the minimum altitudes, runway visual ranges (RVRs), and transmitter and monitoring configurations designed depending on the normal expected weather patterns and airport safety requirements.

<span class="mw-page-title-main">Omega (navigation system)</span> First global radio navigation system for aircraft

OMEGA was the first global-range radio navigation system, operated by the United States in cooperation with six partner nations. It was a hyperbolic navigation system, enabling ships and aircraft to determine their position by receiving very low frequency (VLF) radio signals in the range 10 to 14 kHz, transmitted by a global network of eight fixed terrestrial radio beacons, using a navigation receiver unit. It became operational around 1971 and was shut down in 1997 in favour of the Global Positioning System.

<span class="mw-page-title-main">Non-directional beacon</span> Radio transmitter which emits radio waves in all directions, used as a navigational aid

A non-directional beacon (NDB) or non-directional radio beacon is a radio beacon which does not include inherent directional information. Radio beacons are radio transmitters at a known location, used as an aviation or marine navigational aid. NDB are in contrast to directional radio beacons and other navigational aids, such as low-frequency radio range, VHF omnidirectional range (VOR) and tactical air navigation system (TACAN).

<span class="mw-page-title-main">Automatic direction finder</span> Marine or aircraft radio-navigation instrument

An automatic direction finder (ADF) is a marine or aircraft radio-navigation instrument that automatically and continuously displays the relative bearing from the ship or aircraft to a suitable radio station. ADF receivers are normally tuned to aviation or marine NDBs operating in the LW band between 190 – 535 kHz. Like RDF units, most ADF receivers can also receive medium wave (AM) broadcast stations, though these are less reliable for navigational purposes.

<span class="mw-page-title-main">VHF omnidirectional range</span> Aviation navigation system

Very High Frequency Omnidirectional Range Station (VOR) is a type of short-range radio navigation system for aircraft, enabling aircraft with a receiving unit to determine its position and stay on course by receiving radio signals transmitted by a network of fixed ground radio beacons. It uses frequencies in the very high frequency (VHF) band from 108.00 to 117.95 MHz. Developed in the United States beginning in 1937 and deployed by 1946, VOR became the standard air navigational system in the world, used by both commercial and general aviation, until supplanted by satellite navigation systems such as GPS in the early 21st century. As such, VOR stations are being gradually decommissioned. In 2000 there were about 3,000 VOR stations operating around the world, including 1,033 in the US, but by 2013 the number in the US had been reduced to 967. The United States is decommissioning approximately half of its VOR stations and other legacy navigation aids as part of a move to performance-based navigation, while still retaining a "Minimum Operational Network" of VOR stations as a backup to GPS. In 2015, the UK planned to reduce the number of stations from 44 to 19 by 2020.

<span class="mw-page-title-main">Direction finding</span> Measurement of the direction from which a received signal was transmitted

Direction finding (DF), or radio direction finding (RDF), is the use of radio waves to determine the direction to a radio source. The source may be a cooperating radio transmitter or may be an inadvertant source, a naturally-occurring radio source, or an illicit or enemy system. Radio direction finding differs from radar in that only the direction is determined by any one receiver; a radar system usually also gives a distance to the object of interest, as well as direction. By triangulation, the location of a radio source can be determined by measuring its direction from two or more locations. Radio direction finding is used in radio navigation for ships and aircraft, to locate emergency transmitters for search and rescue, for tracking wildlife, and to locate illegal or interfering transmitters. During the Second World War, radio direction finding was used by both sides to locate and direct aircraft, surface ships, and submarines.

Gee-H, sometimes written G-H or GEE-H, was a radio navigation system developed by Britain during the Second World War to aid RAF Bomber Command. The name refers to the system's use of the earlier Gee equipment, as well as its use of the "H principle" or "twin-range principle" of location determination. Its official name was AMES Type 100.

<span class="mw-page-title-main">High-frequency direction finding</span> Electronic equipment for finding radio sources

High-frequency direction finding, usually known by its abbreviation HF/DF or nickname huff-duff, is a type of radio direction finder (RDF) introduced in World War II. High frequency (HF) refers to a radio band that can effectively communicate over long distances; for example, between U-boats and their land-based headquarters. HF/DF was primarily used to catch enemy radios while they transmitted, although it was also used to locate friendly aircraft as a navigation aid. The basic technique remains in use as one of the fundamental disciplines of signals intelligence, although typically incorporated into a larger suite of radio systems and radars instead of being a stand-alone system.

<span class="mw-page-title-main">Loop antenna</span> Type of radio antenna

A loop antenna is a radio antenna consisting of a loop or coil of wire, tubing, or other electrical conductor, that for transmitting is usually fed by a balanced power source or for receiving feeds a balanced load. Within this physical description there are two distinct types:

<span class="mw-page-title-main">Marker beacon</span> Type of VHF radio beacon used in aviation

A marker beacon is a particular type of VHF radio beacon used in aviation, usually in conjunction with an instrument landing system (ILS), to give pilots a means to determine position along an established route to a destination such as a runway.

The Telefunken Kompass Sender was one of the earliest radio navigation systems to be deployed. It was developed in 1908 by the German electronics firm Telefunken. It was used primarily for long-distance navigation by Zeppelins, and was taken out of service around 1918.

The Lorenz beam was a blind-landing radio navigation system developed by C. Lorenz AG in Berlin. The first system had been installed in 1932 at Berlin-Tempelhof Central Airport, followed by Dübendorf in Switzerland (1934) and others all over the world. The Lorenz company referred to it simply as the Ultrakurzwellen-Landefunkfeuer, German for "ultra-short-wave landing radio beacon", or LFF. In the UK it was known as Standard Beam Approach (SBA).

<span class="mw-page-title-main">Radio</span> Use of radio waves to carry information

Radio is the technology of communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates oscillating electrical energy, often characterized as a wave. They can be received by other antennas connected to a radio receiver, this is the fundamental principle of radio communication. In addition to communication, radio is used for radar, radio navigation, remote control, remote sensing, and other applications.

During World War II, the German Luftwaffe relied on an increasingly diverse array of electronic communications, IFF and RDF equipment as avionics in its aircraft and also on the ground. Most of this equipment received the generic prefix FuG for Funkgerät, meaning "radio equipment". Most of the aircraft-mounted Radar equipment also used the FuG prefix. This article is a list and a description of the radio, IFF and RDF equipment.

Sonne was a radio navigation system developed in Germany during World War II. It was developed from an earlier experimental system known as Elektra, and therefore the system is also known as Elektra-sonnen. When the British learned of the system they started using it as well, under the name Consol, meaning "by the sun".

<span class="mw-page-title-main">Bellini–Tosi direction finder</span> Type of radio direction finder

A Bellini–Tosi direction finder is a type of radio direction finder (RDF), which determines the direction to, or bearing of, a radio transmitter. Earlier RDF systems used very large rotating loop antennas, which the B–T system replaced with two fixed antennae and a small rotating loop, known as a radiogoniometer. This made RDF much more practical, especially on large vehicles like ships or when using very long wavelengths that demand large antennae.

Doppler radio direction finding, also known as Doppler DF, is a radio direction-finding method that generates accurate bearing information with minimal electronics. It is best suited to applications in VHF and UHF frequencies and takes only a short time to indicate a direction. This makes it suitable for measuring the location of the vast majority of commercial, amateur, and automated broadcasts. Doppler DF is one of the most widely used direction-finding techniques. Other direction-finding techniques are generally used only for fleeting signals or for longer or shorter wavelengths.

References

Citations

  1. "Orfordness Visitor Map". National Trust. 2018. Retrieved 19 March 2023.
  2. Charles Husick, "Chapman Piloting and Seamanship" (64th ed.), Hearst Communications, December 2003, p. 618
  3. 1 2 Joseph Moell and Thomas Curlee, "Transmitter Hunting: Radio Direction Finding Simplified", TAB Books, 1978, pp. 1–5.
  4. 1 2 3 4 Sitterly & Davidson 1948, p. 4.
  5. 1 2 Notices 1930, p. 1388.
  6. 1 2 Smith-Rose 1931, p. 137.

Bibliography

52°05′01.08″N01°34′02.46″E / 52.0836333°N 1.5673500°E / 52.0836333; 1.5673500